Глава 1. ВОЛОКОННАЯ ОПТИКА

1.2  История волоконной оптики

Использование света для передачи информации имеет давнюю историю. Моряки применяли сигнальные лампы для передачи информации с помощью кода Морзе, а маяки в течение многих веков предупреждали мореплавателей об опасностях.

Клауд Чапп в девяностых годах XVIII века построил оптический телеграф во Франции. Сигнальщики располагались на вышках, расположенных от Парижа до Лилля по цепочке длиной 230 км. Сообщения передавалось из одного конца в другой за 15 минут. В Соединенных Штатах оптический телеграф соединял Бостон с островом Марта Вайнярд, расположенным недалеко от этого города. Все эти системы со временем были заменены электрическими телеграфами.

Английский физик Джон Тиндалл в 1870 году продемонстрировал воз­можность управления светом на основе внутренних отражений. На собрании Королевского общества было показано, что свет, распространяющийся в струе очищенной воды, может огибать любой угол. В эксперименте вода протекала над горизонтальным дном одного желоба и падала по параболической траектории в другой желоб. Свет попадал в струю воды через прозрачное окно на дне первого желоба. Когда Тиндалл направлял свет по касательной к струе, аудитория могла наблюдать зигзагообразное распространение света внутри изогнутой части струи. Аналогичное зигзагообразное распространение света происходит и в оптическом волокне.

Десятилетием позднее Александр Грэхем Белл запатентовал фотофон, в котором направленный свет использовался для передачи голоса. В этом устройстве с помощью системы линз и зеркал свет направлялся на плоское зеркало, закрепленное на рупоре. Под воздействием звука зеркало колебалось, что приводило к модуляции отраженного света. В приемном устройстве использовался детектор на основе селена, электрическое сопротивление которого меняется в зависимости от интенсивности падающего света. Модулированный голосом солнечный свет, падающий на образец селена, изменял силу тока, протекающего через контур приемного устройства, и воспроизводил голос. Данное устройство позволяло передавать речевой сигнал на расстояние более 200 м.

В начале XX века были проведены теоретические и экспериментальные исследования диэлектрических волноводов, в том числе гибких стеклянных стержней.

В 50-е годы волокна, предназначенные для передачи изображения, были разработаны Брайеном 0'Бриеном, работавшим в Американской оптической компании, и Нариндером Капани с коллегами в Императорском научно-технологическом колледже в Лондоне. Эти волокна нашли применение в световодах, используемых в медицине для визуального наблюдения внутренних органов человека. Доктор Капани был первым, кто разработал стеклянные волокна в стеклянной оболочке и ввел термин "волоконная оптика" (1956 год). В 1973 году доктор Капани основал компанию Kaptron, специализирующуюся в области волоконно-оптических разветвителей и коммутаторов.

В 1957 году Гордон Голд, выпускник Колумбийского университета, сформулировал принципы работы лазера как интенсивного источника света. Теоретические работы Чарльза Таунса совместно с Артуром Шавловым в Bell Laboratories способствовали популяризации идеи лазера в научных кругах и вызвали бурный всплеск экспериментальных исследований, направленных на создание работающего лазера. В 1960 году Теодор Мэймен в Hughes Laboratories создал первый в мире рубиновый лазер. В этом же году Таунс продемонстри­ровал работу гелий-неонового лазера. В 1962 году лазерная генерация была получена на полупроводниковом кристалле. Именно такой тип лазера используется в волоконной оптике. Голду с большим опозданием, только в 1988 году, удалось получить четыре основных патента по результатам работ, выполненных им в 50-е годы и посвященных принципу работы лазера.

Использование излучения лазера как носителя информации не было оставлено без внимания специалистами по коммуникации. Возможности лазерного излучения для передачи информации в 10 000 раз превышают возможности радиочастотного излучения. Несмотря на это, лазерное излучение не вполне пригодно для передачи сигнала на открытом воздухе. На работу такого рода линии существенно влияют туман, смог и дождь, равно как и состояние атмосферы. Лазерному лучу гораздо проще преодолеть расстояние между Землей и Луной, чем между противоположными границами Манхеттена. Таким образом, первоначально лазер представлял собой коммуникационный световой источник, не имеющий подходящей среды передачи.

В 1966 году Чарльз Као и Чарльз Хокхэм, работавшие в английской лаборатории телекоммуникационных стандартов, опубликовали статью о том, что оптические волокна могут использоваться как среда передачи при достижении прозрачности, обеспечивающей затухание менее 20 дБ/км. Они пришли к выводу, что высокий уровень затухания, присущий первым волокнам (около 1000 дБ/км), связан с присутствующими в стекле примеся­ми. Был также указан путь создания пригодных для телекоммуникации волокон, связанный с уменьшением уровня примесей в стекле.

В 1970 году Роберт Маурер со своими коллегами из Corning Glass Works получил первое волокно с затуханием менее 20 дБ/км. К 1972 году в лабораторных условиях был достигнут уровень в 4 дБ/км, что соответствовало критерию Као и Хокхэма. В настоящее время лучшие волокна имеют уровень потерь в 0.2 дБ/км.

Рисунок 1.2 Оптическое волокно, толщиной с волос, из кварцевого стекла,  сделавшее революцию в коммуникационных технологиях.

Не менее крупный успех был достигнут в области полупроводниковых источников и детекторов, соединителей, технологии передач, теории комму­никаций и других, связанных с волоконной оптикой областях. Все это вместе с огромным интересом к использованию очевидных преимуществ волоконной оптики обусловило в середине и конце 70-х годов существенные продвижения на пути создания волоконно-оптических систем.

Военно-морские силы США внедрили волоконно-оптическую линию на борту корабля Little Rock в 1973 году. В 1976-м в рамках программы ALOFT военно-воздушные силы заменили кабельную оснастку самолета А-7 на воло­конно-оптическую. При этом кабельная система из 302 медных кабелей, имевшая суммарную протяженность 1260 м и весившая 40 кг, была заменена на 12 волокон общей длиной 76 м и весом 1.7 кг. Военные были первыми и в деле внедрения волоконно-оптической линии. В 1977 году была запущена 2-км система со скоростью передачи информации 20 Мб/сек, связавшая наземную спутниковую станцию с центром управления.

В 1977 году компании АТ&Т и GTE установили коммерческие телефон­ные системы на основе оптического волокна. Эти системы превзошли по своим характеристикам считавшиеся ранее незыблемыми стандарты произ­водительности, что привело к их бурному распространению в конце 70-х и начале 80-х годов. В 1980-м АТ&Т объявила об амбициозном проекте воло­конно-оптической системы, связывающей между собой Бостон и Ричмонд. Реализация проекта воочию продемонстрировала скоростные качества новой технологии в серийных высокоскоростных системах, а не только в экспериментальных установках. После этого стало ясно, что в будущем став­ку надо делать на волоконно-оптическую технологию, показавшую возмож­ность широкого практического применения.

По мере развития технологии столь же быстро расширялось и крепло производство. Уже в 1983 году выпускался одномодовый волоконно-оптический кабель, но его практическое использование было связано с множеством проблем, поэтому на протяжении многих лет полностью использовать такие кабели удавалось лишь в некоторых специализированных раз­работках. К 1985 году основные организации по передаче данных на большие расстояния, компании АТ&Т и MCI, не только внедрили одномодовые опти­ческие системы, но и утвердили их в качестве стандарта для будущих проектов.

Несмотря на то, что компьютерная индустрия, технология компьютер­ных сетей и управление производством не столь быстро, как военные и те­лекоммуникационные компании, брали на вооружение волоконную оптику, тем не менее, и в этих областях также производились экспериментальные работы по исследованию и внедрению новой технологии. Наступление эры информации и возникшая в связи с этим потребность в более производи­тельных телекоммуникационных системах только подхлестнули дальнейшее развитие волоконно-оптической технологии. Сегодня эта технология нахо­дит широкое применение и вне области телекоммуникаций.

Например, компания IBM, лидер в производстве компьютеров, объявила в 1990 году о выпуске нового быстродействующего компьютера, использующего контроллер канала связи с дисковыми и ленточными внешними накопителями на основе волоконной оптики. Это стало первым применением волоконной оп­тики в серийном оборудовании. Внедрение волоконного контроллера, получив­шего название ESCOM, позволило передавать информацию с большей скоростью и на большие расстояния. Предшествующая модель контроллера на основе медных проводников имела скорость передачи данных 4.5 Мб/сек с максимальной длиной линии передачи в 400 футов. Новый контроллер рабо­тает со скоростью 10 Мб/сек на расстоянии в несколько миль.

В 1990 году Линн Моллинар, сотрудник Bellcore, продемонстрировал воз­можность передачи сигнала без регенерации со скоростью 2.5 Гб/сек на рас­стояние около 7500 км. Обычно волоконно-оптический сигнал необходимо усиливать и периодически восстанавливать его форму — примерно через каждые 25 км. При передаче волоконно-оптический сигнал теряет мощность и искажается. В системе Моллинара лазер работал в солитонном режиме и использовалось самоусиливающее волокно с добавками эрбия. Солитонные (в очень узком диапазоне спектра) импульсы не рассеиваются и сохраняют свою первоначальную форму по мере распространения по во­локну. В то же самое время японской компанией Nippon Telephone & Telegraph была достигнута скорость 20 Гб/сек, правда, на существенно более короткое расстояние. Ценность солитонной технологии заключается в прин­ципиальной возможности прокладки по дну Тихого или Атлантического океана волоконно-оптической телефонной системы, не требующей установ­ки промежуточных усилителей. Однако с 1992 года солитонная технология остается на уровне лабораторных демонстраций и не находит пока коммер­ческого применения.

Волоконно-оптическая альтернатива

Глобальная сеть требует эффективной среды для передачи информации. Традиционные технологии, основанные на применении медного кабеля или микроволновой передаче, имеют недостатки и существенно уступают по характеристикам волоконной оптике. Например, медные кабели характеризуются ограниченной скоростью передачи информации и подверже­ны влиянию внешних полей.

Микроволновая передача, хотя и может обеспе­чить достаточно высокую скорость передачи информации, требует использования дорогостоящего оборудования и ограничивается зоной прямой видимости. Волоконная оптика позволяет передавать информацию с сущест­венно более высокими скоростями по сравнению с медными кабелями и имеет гораздо более приемлемую стоимость и меньше ограничений, чем микровол­новая технология.

Возможности волоконной оптики только начинают реализо­вываться. Уже сейчас волоконно-оптические линии превосходят по своим характеристикам аналоги, основанные на медном кабеле, и нужно учитывать, что технологические возможности медных кабелей имеют меньший потенциал развития, чем начинающая развиваться волоконно-оптическая технология. Во­локонная оптика обещает стать неотъемлемой частью информационной рево­люции, равно как и частью всемирной кабельной сети.

Волоконная оптика будет влиять на жизнь каждого человека, порой прак­тически незаметно. Приведем несколько примеров незаметного вхождения волоконной оптики в нашу жизнь:

§         трансляция голоса через всю страну;

§         рас­пространение по кабелю телевизионного изображения в ваш дом по кабелю;

§         соединение электронного оборудования в вашем офисе с оборудованием в других офисах;

§         соединение электронных блоков в вашем автомобиле;

§         управ­ление производственным процессом в промышленности.

 

Волоконная оптика является новой технологией, только начинающей свое развитие, но уже доказана необходимость ее применения как среды передачи для различных прикладных задач, а характеристики волоконной оптики позволят в будущем существенно расширить область ее применения.