Туннельный диод
В 1958 году Есаки в процессе изучения внутренней полевой эмиссии в вырожденном германиевом p-n переходе обнаружил "аномальную" ВАХ: дифференциальное сопротивление на одном из участков характеристики было отрицательным. Этот эффект он объяснил с помощью концепции квантово-механического туннелирования и при этом получил приемлемое согласие между теоретическими и экспериментальными результатами. Основа этого явления заключается в том, что частица (например, электрон 2 на рис), имея энергию E эл , которая меньше высоты потенциального барьера E б обладает конечной вероятностью проникновения сквозь этот барьер. Потенциальный барьер E б (например, связанный с работой выхода электрона из металла) по законам классической физики не составляет препятствия для электрона 1, обладающего большей энергией, чем высота этого барьера. При определенных условиях и электрон 2 может преодолеть его, хотя энергия электрона меньше высоты потенциального барьера. Причем этот электрон не огибает барьера, а как бы «туннелирует» сквозь него (отсюда и название эффекта), имея одну и ту же энергию до и после перехода.
Такой механизм преодоления потенциального барьера можно связать с волновым представлением движения электрона в твердом теле, когда при столкновении с барьером электрон подобно волне проникает на какую-то глубину внутрь его. В случае барьера конечной толщины имеется какая-то конечная вероятность найти волну (электрон) с другой стороны барьера, что эквивалентно прохождению электроном барьера. Чем меньше ширина барьера, тем больше «прозрачность» его для волны; т. е. тем больше вероятность прохождения электрона сквозь этот потенциальный барьер. При определенных условиях туннельный эффект может наблюдаться в p - n -переходе. При обычном легировании полупроводниковых материалов обедненный слой получается довольно широким. С ростом степени легирования материала ширина p - n -перехода уменьшается и вероятность туннелирования возрастает.
Таким образом, туннельный диод представляет собой простой p-n переход обе стороны которого вырождены (т.е. сильно легированы примесями). Ниже приведена энергетическая диаграмма туннельного диода, находящегося в состоянии термического равновесия.
В результате сильного легирования уровень Ферми проходит внутри разрешённых зон. Степени вырождения Vp и Vn обычно составляют несколько kT/q, а ширина обеднённого слоя ~100 A и меньше, т.е. намного меньше, чем в обычном p-n переходе. На рисунке(а) приведена типичная статическая вольт-амперная характеристика туннельного диода, из которой видно, что ток в обратном направлении (потенциал p-области отрицателен по отношению к потенциалу n-области) монотонно увеличивается. В прямом направлении ток сначала возрастает до максимального значения (пикового значения Ip) при напряжении Vp, а затем уменьшается до минимальной величины Iv при напряжении Vv. При напряжениях, превышающих Vv, ток возрастает с ростом напряжения по экспоненциальному закону. Полный статический ток диода представляет собой сумму тока туннелирования из зоны в зону, избыточного и диффузионного тока(б).
Отметим, что уровни Ферми проходят внутри разрешенных зон полупроводника, и в состоянии термодинамического равновесия уровень Ферми постоянен по всему полупроводнику. Выше уровня Ферми все состояния по обеим сторонам перехода оказываются пустыми, а ниже уровня Ферми все разрешенные состояния по обеим сторонам перехода заполнены электронами. Поэту в отсутствии приложенного напряжения туннельный ток не протекает.
При подаче напряжения на переход электроны могут туннелировать из валентной зоны в зону проводимости или наоборот. Для протекания туннельного тока необходимо выполнение следующих условий:
- энергетические состояния на той стороне перехода, откуда туннелируют электроны, должны быть заполнены;
- на другой стороне перехода энергетические состояния с той же энергией должны быть пустыми;
- высота и ширина потенциального барьера должны быть достаточно малыми, чтобы существовала конечная вероятность туннелирования;
- должен сохраняться квазиимпульс.
На рисунке показано, как туннелируют электроны из валентной зоны в зону проводимости при обратном напряжении на диоде. Соответствующая величина тока отмечена точкой на вольт-амперной характеристике. При прямом напряжении существует диапазон энергий, при которых состояния в n-области заполнены, а разрешенные состояния в p-области пусты. Естественно, что при этом электроны могут туннелировать из n-области в p-область. При увеличении прямого напряжения число разрешенных пустых состояний в p-области, в которые могут туннелировать электроны из n-области, уменьшается. Если же прямое напряжение имеет такое значение, что зоны "не перекрываются", т.е. энергия дна зоны проводимости точно совпадает с энергией потолка валентной зоны, то неразрешенные пустые состояния, соответствующие заполненным состояниям, отсутствуют. Следовательно, в этой точке туннельный ток должен исчезать. При дальнейшем увеличении напряжения будет протекать обычный диффузионный ток, который экспоненциально возрастает с ростом напряжения. Таким образом, следует ожидать, что при увеличении прямого напряжения туннельный ток сначала возрастает от нуля до максимального значения Ip, а затем уменьшается до нуля, когда приложенное прямое напряжение V=Vn+Vp, где Vn-степень вырождения n-области (Vn=(Efn-Ec)/q),а Vp-степень вырождения p-области (Vp=(Ev-Efp)/q). Падающий участок ВАХ соответствует области отрицательного дифференциального сопротивления. Процесс туннелирования может быть прямым и непрямым. Случай прямого туннелирования показан на рисунке а, где структура зон в импульсном пространстве E-k в классических точках поворота наложена на энергетическую диаграмму туннельного перехода в координатном пространстве E-x. При такой структуре зон электроны могут туннелировать из окрестности минимума зоны проводимости в окрестность максимума валентной зоны, сохраняя значение импульса. Таким образом, для того чтобы происходило прямое туннелирование, положения дна зоны проводимости и потолка валентной зоны в пространстве импульсов должны совпадать. Это условие выполняется в полупроводниках с прямой запрещенной зоной (в таких , как GaAs и GaSb). Оно может выполняться также в полупроводниках с непрямой запрещенной зоной ( например, в Ge) при достаточно больших приложенных напряжениях, таких, что максимум валентной зоны находится на одном уровне с непрямым минимумом зоны проводимости.