Министерство образования и науки Российской Федерации

Государственное образовательное учреждение высшего профессионального образования «Петрозаводский государственный университет»

В. А. Гуртов, О. Н. Ивашенков

Сборник задач по микрооптоэлектронике

Петрозаводск 2005

Оглавление

1. Статистика электронов и дырок в полупроводниках	3
2. Диффузия и дрейф. Генерация и рекомбинация	4
3. Барьеры Шоттки и <i>р-п</i> переходы. Диоды	5
4. Биполярные транзисторы	6
5. МДП-структуры	7
6. Полевые транзисторы	8
7. Оптоэлектроника	9
8. Интегральные микросхемы	10
СПРАВОЧНЫЕ ТАБЛИЦЫ	14
Физические параметры важнейших полупроводников	14
Работа выхода из металлов (эВ)	14
Свойства диэлектриков	14
Свойства диэлектриков	14 15
Свойства диэлектриков ОТВЕТЫ И РЕШЕНИЯ 1. Статистика электронов и дырок в полупроводниках	14 15 15
Свойства диэлектриков ОТВЕТЫ И РЕШЕНИЯ 1. Статистика электронов и дырок в полупроводниках 2. Диффузия и дрейф. Генерация и рекомбинация	14 15 15 18
Свойства диэлектриков ОТВЕТЫ И РЕШЕНИЯ 1. Статистика электронов и дырок в полупроводниках 2. Диффузия и дрейф. Генерация и рекомбинация 3. Барьеры Шоттки и <i>р-п</i> переходы. Диоды	14 15 18 20
Свойства диэлектриков ОТВЕТЫ И РЕШЕНИЯ 1. Статистика электронов и дырок в полупроводниках 2. Диффузия и дрейф. Генерация и рекомбинация 3. Барьеры Шоттки и <i>р-п</i> переходы. Диоды 4. Биполярные транзисторы	14 15 15 18 20 23
Свойства диэлектриков ОТВЕТЫ И РЕШЕНИЯ 1. Статистика электронов и дырок в полупроводниках 2. Диффузия и дрейф. Генерация и рекомбинация 3. Барьеры Шоттки и <i>p-n</i> переходы. Диоды 4. Биполярные транзисторы 5. МДП–структуры	14 15 18 20 23 24
Свойства диэлектриков ОТВЕТЫ И РЕШЕНИЯ 1. Статистика электронов и дырок в полупроводниках 2. Диффузия и дрейф. Генерация и рекомбинация 3. Барьеры Шоттки и <i>р-п</i> переходы. Диоды 4. Биполярные транзисторы 5. МДП–структуры	14 15 18 20 23 24 29
Свойства диэлектриков ОТВЕТЫ И РЕШЕНИЯ 1. Статистика электронов и дырок в полупроводниках 2. Диффузия и дрейф. Генерация и рекомбинация 3. Барьеры Шоттки и <i>р-и</i> переходы. Диоды 4. Биполярные транзисторы 5. МДП–структуры 6. Полевые транзисторы 7. Оптоэлектроника	14 15 18 20 23 24 29 30
Свойства диэлектриков ОТВЕТЫ И РЕШЕНИЯ	14 15 15 18 20 23 24 29 30 31

Задачи

1. Статистика электронов и дырок в полупроводниках

1.1. Найти, чему равна собственная концентрация свободных носителей заряда в кремнии Si, германии Ge, арсениде галлия GaAs и антимониде индия InSb при комнатной температуре T = 300K и температуре жидкого азота T = 77 K.

1.2. Кремний Si и арсенид галлия GaAs легированы донорной примесью до концентрации $N_{\rm D} = 10^{17}$ см⁻³. Считая примесь полностью ионизованной, найти концентрацию основных и неосновных носителей заряда при температуре T = 300 K.

1.3. Рассчитать объемное положение уровня Ферми φ_0 относительно середины запрещенной зоны в собственных полупроводниках – кремнии Si, и антимониде индия InSb при температурах $T_1 = 300$ K и $T_2 = 77$ K (с учетом различных значений эффективных масс электронов и дырок).

1.4. Найти объемное положение уровня Ферми φ_0 в германии Ge марки ГДА– 10 при температуре T = 300 К.

1.5. Рассчитать объемное положение уровня Ферми φ_0 относительно середины запрещенной зоны в электронном и дырочном антимониде индия InSb при азотной температуре T = 77 К и концентрации легирующей примеси $N_{\rm D,A} = 10^{15}$ см⁻³.

1.6. Рассчитать положение уровня Ферми φ_0 в приближении полностью ионизованной примеси в кремнии марки КЭФ–4.5 при температурах $T_1 = 300$ К и $T_2 = 77$ К.

1.7 Найти удельное сопротивление ρ электронного и дырочного кремния Si с легирующей примесью $N_{\rm D,A} = 10^{16}$ см⁻³ при комнатной температуре.

1.8 Рассчитать собственное удельное сопротивление ρ_i монокристаллов кремния Si, германия Ge, арсенида галлия GaAs и антимонида индия InSb при комнатной температуре.

1.9 Найти концентрацию легирующей акцепторной примеси для кремния Si и германия Ge, при которой наступает вырождение концентрации свободных носителей заряда при комнатной температуре T = 300 K.

1.10 Найти, как изменится объемное положение уровня Ферми φ_0 в электронном арсениде галлия GaAs с $\rho = 1$ Ом·см при изменении температуры от T = 300 K до T = 77 K.

1.11 Полупроводники кремний Si, германий Ge, арсенид галлия GaAs и антимонид индия InSb легированы донорной примесью до концентрации $N_{\rm D} = 10^{15}$ см⁻³. Найти граничную температуру $T_{\rm \Gamma p,}$ при которой собственная концентрация носителей заряда $n_{\rm i}$ еще ниже концентрации основных носителей заряда $n_{\rm 0}$.

1.12 Качественно представить на графике зависимость концентрации электронов в частично компенсированном полупроводнике $(N_{\rm D} > N_{\rm A}) \ln n$ от $\frac{1}{T}$. Оценить границы области температур, в которых $n \approx N_{\rm D} - N_{\rm A}$ для кремния, легированного мышьяком $E_{\rm D} = E_{\rm C} - 0,05$ эВ.

2. Диффузия и дрейф. Генерация и рекомбинация

2.1. В образце *p*-Si, находящемся при T = 300 K, распределение примеси вдоль

оси x: $N_A(x) = N \cdot e^{-x_0}$, где $x_0 = 0,5$ мкм. Считая $p(x) = N_A(x)$, вычислить напряженность внутреннего электрического поля E_i и плотности диффузионного и дрейфового токов дырок в зависимости от N. Считать $D_p = 10 \text{ см}^2 \cdot \text{c}^{-1}$ и $\mu_p = 400 \text{ см}^2 \text{ B}^{-1} \text{c}^{-1}$.

 $D_{\rm p} = 10 \,{\rm cm}^2 {\rm cc}^{-1}$ и $\mu_{\rm p} = 400 \,{\rm cm}^2 \,{\rm B}^{-1} {\rm c}^{-1}$. 2.2. Образец *n*-Si с удельным сопротивлением 0,6 Ом·см содержит $N_{\rm t} = 10^{15} \,{\rm cm}^{-3}$ центров генерации–рекомбинации, расположенных на уровне Ферми для материала с собственной проводимостью. Сечения захвата носителей заряда $\sigma_{\rm t} = 10^{-15} \,{\rm cm}^2$, тепловая скорость $v_{\rm t} = 10^7 \,{\rm cm} {\rm c}^{-1}$.

1) Вычислить скорость генерации, если область обеднена подвижными носителями заряда;

2) Вычислить скорость генерации в области, где только концентрация неосновных носителей заряда снижена по сравнению с равновесным значением.

2.3. Свет падает на образец кремния, легированный донорами с концентрацией $N_{\rm D} = 10^{16}$ см⁻³. При этом генерируется 10^{21} см⁻³ с⁻¹ электронно-дырочных пар. Генерация происходит равномерно по образцу. Имеется 10^{15} см⁻³ центров генерации-рекомбинации с энергией $E_{\rm t} = E_{\rm i}$, поперечные сечения захвата электронов и дырок равны 10^{-14} см². Рассчитать:

1) установившиеся концентрации электронов и дырок после включения света,

2) время релаксации системы после выключения света τ_p и время жизни τ_0 .

2.4. Образец арсенида галлия GaAs подвергается внешнему воздействию, в результате которого генерируется 10^{20} см⁻³·c⁻¹ электронно-дырочных пар. Уровень легирования $N_{\rm D} = 2 \cdot 10^{15}$ см⁻³, время жизни $\tau_0 = 5 \cdot 10^{-8}$ с, T = 300 К. Вычислить: 1) коэффициент рекомбинации; 2) избыточную концентрацию неосновных носителей заряда.

2.5. Концентрация электронов в однородном слаболегированном *n*-Si при комнатной температуре линейно спадает от 10^{17} см⁻³ при x = 0 до $6 \cdot 10^{16}$ см⁻³ при x = 2 мкм и все время поддерживается постоянной. Найти плотность тока электронов при отсутствии электрического поля. Подвижность при данном уровне легирования считать $\mu = 1000$ см²·B⁻¹·c⁻¹.

2.6. Вычислить относительное изменение проводимости $\frac{\Delta \sigma}{\sigma_0}$ при стационар-

ном освещении с интенсивностью $I = 5 \cdot 10^{15}$ см⁻²·с⁻¹ в германии. Коэффициент поглощения $\gamma = 100$ см⁻¹, толщина образца много меньше γ^{-1} . Рекомбинация происходит на простых дефектах, время жизни $\tau_0 = 2 \cdot 10^{-4}$ с, равновесная концентрация электронов $n_0 = 10^{15}$ см⁻³.

3. Барьеры Шоттки и р-п переходы. Диоды

3.1. Найти, чему равна высота потенциального барьера φ_{κ} в диоде Шоттки электронный германий *n*-Ge – золото Au. Нарисовать зонную диаграмму контакта при термодинамическом равновесии. Удельное сопротивление полупроводника $\rho = 1$ Ом·см.

3.2. Рассчитать, чему равна ширина области обеднения при внешних напряжениях V = +0,4 B, V = -2 B и в равновесных условиях в диоде *n*-Si – Pt. Нарисовать зонную диаграмму контакта при термодинамическом равновесии.

3.3. Для барьера Шоттки электронный арсенид галлия – золото GaAs – Au рассчитать, чему равно максимальное электрическое поле E в области пространственного заряда при внешних напряжениях V = +0,3 B, V = 0 B и V = -100 B. $N_{\rm D} = 10^{16}$ см⁻³.

3.4. Чему равны электрическое поле *E* и потенциал φ в барьере Шоттки *n*-Si – Аи при напряжении V = -5 В на расстоянии z = 1,2 мкм от границы раздела кремний – золото. $\rho = 10$ Ом см.

3.5. Найти, чему равны плотности тока *j* в барьере Шоттки *n*-GaAs – Pt при внешнем напряжении V = +0,5 В и V = -5 В. Чем обусловлены эти токи? $\rho = 50$ Ом·см.

3.6. Рассчитать высоту потенциального барьера φ_{κ} в *p-n* переходе *n*-Ge – *p*-Ge с объемным сопротивлением $\rho = 2$ Ом·см. Как изменится высота потенциального барьера на границе при изменении напряжения от V = +0,15 В до V = -5 В. Нарисовать зонные диаграммы.

3.7. Найти максимальное электрическое поле *E* и ширину областей пространственного заряда W_n и W_p в электронном и дырочном германии для *p*-*n* перехода в равновесных условиях. $\rho_n = 10$ Ом см, $\rho_p = 1$ Ом см.

3.8. Как изменится величина и направление электрического поля в *p-n* переходе n-Si – *p*-Si с $\rho = 10$ Ом·см при изменении внешнего напряжения с прямого V = +0,4 В на обратное V = -2 В на расстоянии z = +0,2 мкм от границы раздела электронного и дырочного полупроводников.

3.9. Рассчитать изменение потенциального барьера $\varphi(z)$ вглубь полупроводников в p- n^+ переходе n^+ -Si – p-Si при напряжении V = -1 В с шагом $\Delta z = 0,1$ мкм. $\rho_n = 0,001$ Ом·см, $\rho_p = 4,5$ Ом·см. Нарисовать зонную диаграмму.

3.10. Рассчитать величину тока *I* в кремниевом *p*-*n* переходе при внешнем напряжении V = +0.5 В и V = -0.5 В. Уровни легирования: $N_{\rm A} = 10^{16}$ см⁻³, $N_{\rm D} = 10^{14}$ см⁻³, площадь S = 1 мм².

3.11. Рассчитать и построить зонную диаграмму гетероперехода *n*-Ge – *p*-GaAs. $N_{\rm D,A} = 10^{16}$ см⁻³.

3.12. Имется резкий кремниевый *p-n* переход при комнатной температуре T = 300 K с площадью $S = 10^{-3} \text{ см}^2$ и концентрацией легирующей примеси $N_{\rm D} = N_{\rm A} = 10^{18} \text{ см}^{-3}$. Вычислить накопленный заряд и время, за которое обратное смещение возрастет от 0 до -10 B, если ток через этот диод равен 1 мА.

3.13. Вычислить малосигнальные параметры: дифференциальное сопротивление и емкость для идеального кремниевого диода с длинной базой, если $N_{\rm D} = 10^{18}$ см⁻³ и $N_{\rm A} = 10^{16}$ см⁻³, время жизни $\tau_{\rm n} = \tau_{\rm p} = 10^{-8}$ с, площадь $S = 10^{-4}$ см², температура T = 300 К в случае прямого смещения диода V = 0,1; 0,5; 0,7 В и обратного V = -0,5 и -20 В. Чему равно последовательное сопротивление квазинейтрального объема *p*-области (базы), если ее длина 0,1 см?

4. Биполярные транзисторы

4.1. Для некоторого транзистора типа *p-n-p* задано $I_{p_3} = 1$ мА, $I_{n_3} = 0,01$ мА, $I_{p_K} = 0,98$ мА, $I_{n_K} = 0,001$ мА. Вычислить: *a*) статический коэффициент передачи тока базы – α_T ; *б*) эффективность эмиттера (коэффициент инжекции – γ); *в*) ток базы и коэффициент передачи тока в схемах с ОБ – α и ОЭ – β .

4.2. Показать, что при экспоненциальном распределении примеси в базе *n-p-n* биполярного транзистора поле E_x постоянно. Найти в этом случае концентрацию неосновных носителей вблизи коллектора, если уровень легирования около эмиттера $N_A = 10^{17}$ см⁻³, толщина базы транзистора $x_6 = 0,3$ мкм, а $E_x = 4000$ B/см.

4.3. Кремниевый транзистор типа n^+ -*p*-*n* имеет эффективность эмиттера $\gamma = 0,999$, коэффициент переноса через базу $\alpha_{\rm T} = 0,999$, толщину нейтральной области базы $W_6 = 0,5$ мкм, концентрацию примеси в эмиттере $N_{\rm D} = 10^{19}$ см⁻³, базе $N_{\rm A} = 10^{16}$ см⁻³ и коллекторе $N_{\rm D} = 5 \cdot 10^{15}$ см⁻³. Определить предельное напряжение на эмиттере, при котором прибор перестает быть управляемым и наступает пробой и вычислить время пролета базы и частоту отсечки.

4.4. Имеется кремниевый транзистор типа p^+ -*n*-*p* с параметрами: $N_{A_3} = 5 \cdot 10^{18} \text{ см}^{-3}$, $N_{D6} = 1 \cdot 10^{16} \text{ см}^{-3}$, $N_{A\kappa} = 1 \cdot 10^{15} \text{ см}^{-3}$, ширина области базы W = 1 мкм, площадь $S = 3 \text{ мм}^2$, $U_{3\kappa} = +0,5$ В, $U_{6\kappa} = -5$ В. Вычислить: *а*) толщину нейтральной области W_6 в базе, б) концентрацию неосновных носителей около перехода эмиттер – база $p_n(0)$, *в*) заряд неосновных носителей в области базы Q_6 .

5. МДП-структуры

5.1. Рассчитать дебаевскую длину экранирования в кремнии с удельным сопротивлением $\rho = 15$ Ом см и сравнить с глубиной проникновения электрического поля, T = 300 K.

5.2. Рассчитать и сравнить дебаевские длины экранирования L_D в собственных полупроводниках – кремнии Si, германии Ge, арсениде галлия GaAs, антимониде индия InSb при комнатной температуре.

5.3. Рассчитать объемную концентрацию электронов и дырок на поверхности n_s , p_s для *n*-Si с $\rho = 1$ Ом·см при значениях поверхностного потенциала $\psi_s = 0.3$ B; -0.2 B, -0.5 B, -0.9 B. Определить состояние поверхности.

5.4. Найти величину заряда Q_{sc} и емкости C_{sc} ОПЗ кремния марки КДБ–10 при значениях поверхностного потенциала ψ_s , равных $\psi_s = 0$; φ_0 , $2\varphi_0$.

5.5. Найти в классическом случае среднее расстояние λ_c , на котором локализованы свободные электроны в инверсионном канале в *p*-Si с сопротивлением

 $\rho = 0,1$ Ом-см при поверхностном потенциале $\Psi_s = \frac{3}{2}\varphi_0$ при температурах

T = 300 К и *T* = 77 К.

5.6. Оценить дебройлевскую длину волны электронов для кремния Si, германия Ge, арсенида галлия GaAs и антимонида индия InSb при комнатной T = 300 K и азотной T = 77 K температурах.

5.7. Рассчитать энергию дна первых трех квантовых подзон в *n*-Si при значении $\psi_s = 2\varphi_0$ и при $N_A = 10^{16}$ см⁻³. Найти среднюю область локализации l_c электрона от поверхности на каждом из этих уровней и полное число электронов N_i в подзонах T = 77 К.

5.8. Рассчитать, чему равен заряд поверхностных состояний Q_{ss} при значениях поверхностного потенциала: $\psi_s = 0$; $\psi_s = \varphi_0$; $\psi_s = 2\varphi_0$ для кремния *p*-типа при T = 300 K с уровнем легирования $N_A = 1 \cdot 10^{18}$ см⁻³. Поверхностные состояния распределены равномерно по зоне с плотностью $N_{ss} = 2 \cdot 10^{12}$ см⁻²·эB⁻¹. Сравнить заряд Q_{ss} с соответствующим зарядом Q_{sc} ОПЗ.

5.9. В запрещенной зоне *n*-Si с $\rho = 7,5$ Ом·см имеются моноэнергетические поверхностные состояния (ПС) с концентрацией $N_{\rm s} = 8 \cdot 10^{12}$ см⁻² и сечением захвата $\sigma_{\rm t} = 10^{-16}$ см², расположенные на $E_{\rm t} = 0,45$ эВ выше середины запрещенной зоны. Рассчитать постоянную времени ПС τ , эквивалентную последовательную емкость $C_{\rm s}$ и сопротивление $R_{\rm s}$ при обогащающем изгибе зон $\psi_{\rm s}$, когда уровень Ферми совпадает с положением уровня ПС, T = 300 К.

5.10. Чему равна плотность поверхностных состояний N_{ss} в МДП-структуре *p*-Si – Si₃N₄ – Si(п/к) в состоянии плоских зон, если уровень легирования подложки $N_A = 1,5 \cdot 10^{15}$ см⁻³, площадь затвора S = 0,5 мм², толщина нитрида кремния $d_n = 1,2 \cdot 10^{-5}$ см, а наклон экспериментальной ВФХ равен $\delta = \frac{\Delta C}{\Delta V} = 42 \frac{\pi \Phi}{B}$.

5.11. Рассчитать плотность поверхностных состояний $N_{\rm ss}$, если максимум кривой зависимости нормированной проводимости $\frac{G_p}{\omega}$ от ω находится на

частоте $\omega = 2 \cdot 10^5 \, \Gamma$ ц и равен $\left. \frac{G_p}{\omega} \right|_{\text{max}} = 2 \cdot 10^{-9} \, \frac{\Phi}{\text{см}^2}$. Оценить тип ПС по вели-

чине сечения захвата σ_t , если поверхностная концентрация электронов n_{s0} равна $n_{s0} = 1 \cdot 10^{12}$ см⁻³.

5.12. Рассчитать вольт-фарадную характеристику МДП-системы p-Si – SiO₂ – Al, $d_{ox} = 150$ нм, $N_A = 1,5 \cdot 10^5$ см³, T = 300 К при наличии отрицательного заряда в окисле $N_{ox} = -4 \cdot 10^{11}$ см⁻² и донорного моноуровня поверхностных состояний $N_s = 6 \cdot 10^{11}$ см⁻² на 0,1 эВ ниже середины запрещенной зоны кремния.

6. Полевые транзисторы

6.1. Найти пороговое напряжение $V_{\rm T}$ *n*-канального МОП-транзистора с алюминиевым затвором, если уровень легирования подложки равен $N_{\rm D} = 10^{15}$ см⁻³, толщина диэлектрика $d_{\rm ox} = 100$ нм, заряд в окисле $Q_{\rm ox} = +10^{-8}$ Кл·см⁻², поверхностные состояния отсутствуют.

6.2. МОП-транзистор с отношением ширины к длине канала $\frac{W}{L} = 5$, толщи-

ной затворного окисла 80 нм и подвижностью электронов в канале $\mu_n = 600 \text{ см}^2 \cdot \text{B}^{-1} \cdot \text{c}^{-1}$ предполагается использовать как управляемый резистор. Рассчитать превышение затворного напряжения V_G над пороговым напряжением V_T , при котором сопротивление транзистора R при малых напряжениях на стоке V_d будет равно 2,5 кОм.

6.3. В запоминающем устройстве с плавающим затвором нижний изолирующий слой имеет толщину $d_1 = 10$ нм и относительную проницаемость $\varepsilon_1 = 4$, параметры верхнего слоя: $d_2 = 100$ нм и $\varepsilon_2 = 10$. Плотность тока в нижнем слое $J = \sigma E$, где $\sigma = 10^{-7}$ Ом⁻¹·см⁻¹, в верхнем слое током можно пренебречь. Вычислить изменение порогового напряжения $\Delta V_{\rm T}$, считая что к затвору приложено 10 В в течение t = 0,25 мкс.

6.4. Дан ПЗС-прибор с затворами 5×5 мкм для формирования изображения. Пороговое значение детектируемого заряда составляет $2,5 \cdot 10^3$ электронов на элемент изображения, а заряд каждого элемента считывается и обнуляется каждые 10 мс. В термодинамическом равновесии поверхностная плотность зарядов в инверсионном слое равна $1 \cdot 10^{13}$ см⁻². Рассчитать время жизни неосновных носителей заряда τ_0 в кремнии *p*-типа с $\rho = 12$ Ом·см, учитывая, что доля тепловой генерации не превышает 5% от детектируемого порогового заряда.

6.5. Рассчитать плотность поверхностных состояний $N_{\rm ss}$, при которой скорость поверхностной генерации $I_{\rm s}$ для полностью обедненной поверхности вдвое превышает скорость генерации в приповерхностной обедненной области $I_{\rm F}$. Считать, что сечения захвата носителей заряда равны $\sigma_{\rm t} = 10^{-15}$ см², тепловая скорость $v_{\rm t} = 10^7$ см/с, постоянная времени $\tau = 1$ мкс, ширина ОПЗ $W = 1 \cdot 10^{-6}$ см.

7. Оптоэлектроника

7.1. Эффективность преобразования внешней (электрической) мощности планарного GaAs светодиода η равна 1,5 % при прямом токе I = 50 мА и разности потенциалов U = 2 В. Оценить генерируемую прибором оптическую мощность P_i , если коэффициент отражения R на границе GaAs – воздух равен R = 0.8. Коэффициент преломления GaAs n = 3.6.

7.2. Оценить эффективность преобразования внешней мощности планарного GaAs светодиода η , когда внутренняя оптическая мощность P_i составляет 30 % от приложенной электрической мощности. Коэффициент преломления GaAs n = 3,6.

7.3. Рекомбинационное время жизни неосновных носителей заряда фотодиода $\tau = 5$ нс. При протекании постоянного тока оптическая выходная мощность равна $P_{\rm dc} = 300$ мкВт. Определить выходную мощность $P_{\rm f}$, когда сигнал через диод модулирован на частоте 20 МГц и 100 МГц.

7.4. Ширина запрещенной зоны слаболегированного GaAs при комнатной температуре 1,43 эВ. Когда материал сильно легирован (до вырождения) появляются «хвосты состояний», которые эффективно уменьшают ширину запрещенной зоны на 8%. Определить разницу в излучаемой длине волны света в случае слабого и сильного легирования.

7.5. Идеальный фотодиод (т.е. с квантовым выходом равным 1) освещается излучением мощностью P = 10 мВт при длине волны 0,8 мкм. Рассчитать ток и напряжение на выходе прибора, когда детектор используется в режиме фототока и фото–э.д.с. соответственно. Ток утечки при обратном смещении $I_0 = 10$ нА, рабочая температура T = 300 К.

7.6. Фотодиод на основе *p-n* перехода имеет квантовый выход 50 % на длине волны 0,9 мкм. Рассчитать чувствительность *R*, поглощенную оптическую мощность *P* ($I_p = 1$ мкА) и число фотонов, поглощенных в секунду на этой длине волны r_p .

7.7. Лавинный фотодиод с коэффициентом умножения M = 20 работает на длине волны $\lambda = 1,5$ мкм. Рассчитать квантовый выход и выходной фототок

прибора, если его чувствительность R на этой длине волны равна 0,6 А/Вт при потоке 10^{10} фотонов/с.

7.8. Кремниевый лавинный фотодиод имеет коэффициент умножения M = 20 на длине волны 0,82 мкм при этом квантовый выход 50 % и темновой ток 1 нА. Определить число падающих фотонов r_p на этой длине волны в секунду, обеспечивающее выходной ток прибора (после умножения), больший уровня темнового тока.

8. Интегральные микросхемы

8.1. Для изготовления кремниевого транзистора типа *n-p-n* используется планарно-диффузионная технология без скрытого слоя. Какие операции необходимо выполнить в рамках данного технологического цикла? Кремниевая пластина *p*-типа имеет толщину 0,127-0,152 мм и удельное сопротивление 10 Ом·см. Толщина эпитаксиального слоя 0,025 мм, толщина оксидного слоя 50 нм.

8.2. Сравнить максимально возможную емкость конденсатора размером 100×100 мкм, выполненную в виде МОП-конденсатора с емкостью конденсатора, такого же размера на обратно смещенном *p-n* переходе в *n*-Si с $N_{\rm D} = 1 \cdot 10^{16}$ см⁻³. Принять, что поле пробоя окисла $\rm E = 8 \cdot 10^{6}$ B/см, рабочее напряжение конденсатора U = 5 B (с учетом коэффициента запаса «2»: U = 10 B).

8.3 Для интегральной схемы (ИС) проектируется резистор *p*-типа с двумя сильнолегированными областями p^+ -типа, контактирующими с резистивной полоской. Ширина полоски W = 6 мкм, расстояние между контактами L = 24 мкм. Полоска имеет глубину перехода $x_j = 6$ мкм. Требуемое значение сопротивления R = 1 кОм. Определить поверхностное сопротивление R_s и усредненное удельное сопротивление ρ_{cp} , необходимое для данного резистора. Диффузией в горизонтальном направлении можно пренебречь.

8.4. Соединительная дорожка из поликристаллического кремния с удельным сопротивлением $\rho = 500$ мкОм·см имеет ширину W = 5 мкм и толщину d = 0,5 мкм. Ток пропускается через такую дорожку длиной L = 1 мм, чтобы зарядить конденсатор площадью $S = 0,1 \times 0,5$ мм², имеющей обкладки с двух сторон слоя двуокиси кремния, толщина которого равна $d_{ox} = 100$ нм. Чему равна постоянная времени *RC* для результирующей последовательно включенной цепочки сопротивление – конденсатор? (Сопротивление поликремния – минимальное).

8.5. У поверхности кремния создано ступенчатое распределение легирующих примесей. Рассчитать поверхностное сопротивление, не используя усредненное значение подвижности.

$$\mu_{\rm n}(N_{\rm D} = 1.10^{17} \,{\rm cm}^{-3}) = 730 \frac{{\rm cm}^2}{{\rm B} \cdot {\rm c}}; \quad \mu_{\rm n}(N_{\rm D} = 1.10^{18} \,{\rm cm}^{-3}) = 280 \frac{{\rm cm}^2}{{\rm B} \cdot {\rm c}}.$$

10

Здесь N'_D – поверхностная концентрация примеси.

8.6. Источник тока отрицательной полярности с токовым зеркалом Уилсона для операционного усилителя показан на рисунке ниже.

Все транзисторы в ИМС – идентичные. Коэффициент усиления (средний) $\beta = 100$ для *n-p-n* транзистора и $\beta = 50$ *p-n-p* транзистора. Напряжение питания $V_{\Pi}^{-} = -10$ В и $V_{\Pi}^{+} = 10$ В. Напряжение на прямосмещенном переходе база–эмиттер $V_{63} = 0,7$ В. Напряжение пробоя коллектор–эмиттер (минимальное) – 50 В.

Покажите, что *a*)
$$I_2 = I_1 \cdot \left(1 + \frac{1}{\beta_1} + \frac{1}{\beta_3} - \frac{2}{\beta_2} \right)$$
, пренебрегая членами типа $\frac{1}{\beta^2}$,

б) найдите R_1 при $I_1 = 1,0$ мА, ϵ) найдите диапазон линейного изменения напряжения, ϵ) найдите выходное сопротивление источника тока r_0 , d) найдите процентное изменение I_2 при изменении $U_{\kappa 2}$ на 1 В.

8.7. На рисунке, приведенном ниже, представлены логические элементы и состояние их входов. Что будет наблюдаться на выходах данных элементов?

Дана таблица истинности, записать булевское выражение и начертить логическую схему, соответствующей.

Bx A	Bx B	Bx C	Bx D	Вых Ү	Bx A	Bx B	Bx C	Bx D	Вых Ү
0	0	0	0	0	1	0	0	0	0
0	0	0	1	0	1	0	0	1	1
0	0	1	0	0	1	0	1	0	0
0	0	1	1	0	1	0	1	1	0
0	1	0	0	0	1	1	0	0	0
0	1	0	1	0	1	1	0	1	0
0	1	1	0	0	1	1	1	0	0
0	1	1	1	0	1	1	1	1	1

Назовите его функциональные состояния и перечислите двоичные значения на выходе *Q*, соответствующие каждому тактовому импульсу. 8.9. Дан *D*-триггер:

8.10. Дан ЈК-триггер:

Назовите его функциональные состояния и перечислите двоичные значения на выходе *Q*, соответствующие каждому тактовому импульсу. 8.11. Дан мультиплексор с 8 входами.

Что будет на выходе *У* при каждом сигнале а–i? Можно ли его использовать для преобразования параллельного кода в последовательный? 8.12. Оперативное запоминающее устройство (ОЗУ) 16×4 бита представлено ниже:

Перечислить состояния ОЗУ и состояние выходов во время импульсов а-і.

Справочные таблицы

Параметр		Обозна- чение	Si	Ge	GaAs	InSb
Ширина запре- щенной зоны, эВ	а запре- 300 К 1 зоны, эВ		1,12	0,66	1,43	0,18
	0 К	Ξg	1,21	0,80	1,56	0,23
Подвижность при	электронов	$\mu_{\rm n}$	1500	3900	8500	78000
300 K, cm ² ·B ⁻ ·c ⁻	дырок	$\mu_{ m p}$	600	1900	400	5000
Эффективная мас-	электронов	$m_{\rm dn}^{*}$	1,08	0,56	0,068	0,013
ca	дырок	m_{dp}^{*}	0,56	0,35	0,45	0,6
Эффективная плотность состоя- ний в зоне проводимости, см ⁻³		N _C	2,8·10 ¹⁹	1,04·10 ¹⁹	4,7·10 ¹⁷	3,7·10 ¹⁶
Эффективная плотно ний в валентной зон	ость состоя- е, см ⁻³	$N_{ m V}$	1,02·10 ¹⁹	6,11·10 ¹⁸	7,0·10 ¹⁸	1,16·10 ¹⁹
Диэлектрическая по	стоянная	$\varepsilon_{\rm s}$	11,9	16,0	10,9	17,0
Электронное сродст	во	χ	4,05	4,00	4,07	4,60
Собственная концентрация носителей, см ⁻³		n _i	1,6·10 ¹⁰	2,5·10 ¹³	1,1·10 ⁷	2,0·10 ¹⁶
Время жизни носителей, с		τ	$2,5 \cdot 10^{-3}$	$1,0.10^{-3}$	1.10-8	1·10 ⁻⁸
Дебаевская длина, мкм		$L_{\rm d}$	24	0,68	2250	
Показатель преломл	ения	n	3,44	4,0	3,4	3,75
Температурный коэс	фициент	α	$2,4.10^{-4}$	$3,9.10^{-4}$	$4,3.10^{-4}$	$2,8.10^{-4}$

Физические параметры важнейших полупроводников

Работа выхода из металлов (эВ)

Mg	Al	Ni	Cu	Ag	Au	Pt
3,4	4,1	4,5	4,4	4,3	4,7	5,3

Свойства диэлектриков

	<i>Е</i> _g , эВ	ε _{ct}	€ ∞	<i>ρ</i> , г ⁻¹ ·см ⁻³	<i>Е</i> _{пр} , В/см
SiO ₂	9,0	3,82	2,13	2,33	$1,2.10^{7}$
Si ₃ N ₄	5,1	6,5	4,2	3,11	$6,0.10^{6}$
Ta ₂ O ₅	4,5	27	5,0	8,53	$6,0.10^{6}$

Ответы и решения

1. Статистика электронов и дырок в полупроводниках

1.1. Концентрация собственных носителей заряда *n*_i имеет сильную температурную зависимость и определяется как

$$n_{\rm i} = \sqrt{N_{\rm C} N_{\rm V}} \exp\left(-\frac{E_{\rm g}}{2kT}\right),\tag{1.1},$$

где эффективная плотность состояний в C- и V-зонах $N_{C,V}$ также зависит от температуры T и эффективной массы носителей заряда в зоне m^* :

$$N_{\rm C,V} = 2 \cdot \left(2\pi \cdot \frac{m^* kT}{h^2}\right)^{3/2} = 2,5 \cdot 10^{19} \cdot \left(\frac{m^*}{m_0}\right)^{3/2} \cdot \left(\frac{T}{300}\right)^{3/2}, \, \text{cm}^{-3}.$$
 (1.2)

Ширина запрещенной зоны E_g имеет слабую зависимость от температуры типа $E_g = E_{g0} - \alpha T$. Величины E_{g0} и α приведены в таблице 9.1, здесь же можно найти величины N_C и N_V при T = 300 К. Расчет значений эффективной плотности состояний в *C*- и *V*-зонах и концентрации собственных носителей заряда n_i при температуре жидкого азота 77 К приводится ниже

	Si	Ge	GaAs	InSb
$N_{\rm C}, {\rm cm}^{-3}$	$3,6\cdot10^{18}$	$1,04 \cdot 10^{19}$	$5,8\cdot10^{16}$	$5,1.10^{15}$
$N_{\rm V}, {\rm cm}^{-3}$	$1,4.10^{18}$	$6,9.10^{18}$	9,8·10 ¹⁷	$1,5.10^{18}$
$N_{\rm i}, {\rm cm}^{-3}$	$3 \cdot 10^{-20}$	1,4·10 ⁻⁷	$2,8\cdot10^{-33}$	$1,2.10^{10}$

Примесь полностью ионизована, когда концентрация равновесных электронов равна концентрации легирующей примеси $n_0 = N_D$. Из основного соотношения для полупроводников: $n_0 p_0 = n_i^2$ найдем концентрацию неосновных

носителей заряда
$$p_0 = \frac{n_i^2}{n_0}$$
. Для Si $p_0 = 2,6\cdot 10^3$, для GaAs $p_0 = 1,2\cdot 10^{-3}$ см⁻³.

1.3 В собственном полупроводнике $n_0 = p_0$ и положение уровня Ферми относительно середины запрещенной зоны полупроводника φ_0 можно рассчитать как

$$\varphi_{0i} = \frac{kT}{2} \ln \frac{N_V}{N_C} = \frac{3}{4} kT \ln \left(\frac{m_n^*}{m_p^*}\right),$$

$N_{C,V} = 2 \cdot \left($	$2\pi \cdot \frac{m^* kT}{h^2}$	$\Big _{2}^{3/2} = 2,5 \cdot 10^{19} \cdot 10^{19}$	$\left(\frac{m^*}{m_0}\right)^{\frac{3}{2}} \cdot \left(\frac{T}{300}\right)^{\frac{3}{2}}$	1/2
	Г, К	300	77	
$(0 \ \gamma R)$	Si	-0,0124	-0,0032	
φ_0, SD	InSb	0,074	0,019	

Таким образом, в кремнии уровень Ферми лежит ниже, а в антимониде индия - выше середины запрещенной зоны полупроводника *E*_i.

1.4 В легированном полупроводнике $p_0 \gg n_i$ положение уровня Ферми φ_0 можно рассчитать по формуле

$$\varphi_0 = \frac{kT}{q} \ln\left(\frac{p_0}{n_i}\right) \tag{1.4}$$

Концентрацию основных носителей p_0 найдем, зная величину удельного сопротивления $\rho = 10 \text{ Ом} \cdot \text{см}$, как

$$p_0 = \frac{1}{q\mu\rho} \,. \tag{1.5}$$

В результате: $p_0 = 3,3 \cdot 10^{14}$ см⁻³, $\varphi_0 = 0,067$ эВ.

1.5. Положение уровня Ферми в InSb найдем по формуле (1.4):

 $\varphi_0 = 0.085$ эВ. Чтобы найти φ_0 относительно середины запрещенной зоны, нужно учесть сдвиг уровня Ферми в собственном полупроводнике (см. задача 1.3): -0,019 эВ, т.е. $\varphi_{0n} = 0,104$ эВ в *n*-InSb и $\varphi_{0p} = 0,066$ эВ в *p*-InSb. Если рассчитать положение уровня Ферми относительно края С-зоны, то $\frac{E_{g}}{2} - \varphi_{0n} = 0,115 - 0,104 = 0,011$ эВ – это не превышает величины 2kT(0,013 эВ при *T* = 77 К), т.е. *n*-InSb – вырожден, *p*-InSb – нет.

16

1.6. Зная удельное сопротивление $\rho = 4,5$ Ом·см, по формуле (1.5) найдем уровень легирования $N_{\rm D} = 1 \cdot 10^{15}$ см⁻³, а далее по формуле (1.4) положение уровня Ферми $\varphi_0 = 0,284$ эВ при 300 К и $\varphi_0 = 0,52$ эВ при 77 К.

1.7. *n*-Si ρ = 0,42 Ом·см, *p*-Si ρ = 1,05 Ом·см.

1.8. В собственном полупроводнике удельная электропроводность равна $\sigma_i = qn\mu_n + qp\mu_p = qn_i(\mu_n + \mu_p)$ и, соответственно, $\rho_i = 1/\sigma_i$:

	Si	Ge	GaAs	InSb
ρ_{i} , Ом·см	$1,9.10^{5}$	43	$6,4.10^{7}$	$4 \cdot 10^{-3}$

1.9. Вырождение в полупроводнике наступает, когда уровень Ферми F приближается к C- или V-зоне на расстояние порядка kT, т.е. $F - E_V = kT$. В случае полной ионизации примеси концентрация дырок p определяется как

$$p = N_{\nu} \exp\left(\frac{E_{\nu} - F}{kT}\right) \tag{1.6}$$

и равна уровню легирования $N_{\rm A}$: $N_{\rm A} = p = N_{\rm V}/q$. Для Si: $N_{\rm A} = 3,8\cdot 10^{18}$ см⁻³, для Ge: $N_{\rm A} = 2,2\cdot 10^{18}$ см⁻³.

1.10. $N_{\rm D} = 7,4 \cdot 10^{14}$ см⁻³. Учитывая температурную зависимость $n_{\rm i}$ (см. зад. 1.1), вычисляем φ_0 : при T = 300 К $\varphi_0 = 0,47$ эВ и при 77 К $\varphi_0 = 0,72$ эВ, тогда $\Delta \varphi_0 = 0,25$ эВ

1.11. Известно, что $E_{\rm g}$ и $N_{\rm C,V}$ зависят от температуры. Для оценки граничной температуры пренебрежем этим фактом. Тогда учитывая, что $n_0 = N_{\rm D}$ и $n_0 = n_{\rm i}$, после преобразования получим:

$$T_{\rm rp} = \frac{E_{\rm g}}{2k} \cdot \frac{1}{\ln\left(\frac{\sqrt{N_{\rm C}N_{\rm V}}}{N_{\rm D}}\right)}$$

	Si	Ge	GaAs	InSb
$T_{\rm rp}, {\rm K}$	668	439	1104	195
$T_{\rm rp}, ^{\circ}{\rm C}$	395	166	831	-78

1.12. На качественной зависимости ln n от 1/Т можно выделить 3 участка

1) с энергией активации E_a , соответствующей ионизации примеси, 2) собственно матрицы полупроводника и 3) нулевой. Нижняя граница области T_1 определяется условием $n = N_D - N_A$, т.е.

$$T_1 = \frac{E_{\rm C} - E_{\rm D}}{k \ln \frac{N_{\rm C}(T)}{gN_{\rm A}}}.$$

Верхняя граница области T_2 определяется условием $n_i = N_D - N_A$, т.е.

$$T_{2} = \frac{\left(E_{\rm C} - E_{\rm V}\right)_{0}}{2k\left(\ln\frac{N_{\rm C}(T_{2})}{N_{\rm C} - N_{\rm V}} + \frac{\alpha}{2k}\right)};$$
$$E_{\rm C} - E_{\rm V} = \left(E_{\rm C} - E_{\rm V}\right)_{0} - \alpha T$$

В первом приближении $T_1 = 580$ К и $T_2 = 7010$ К. Второе приближение дает существенно отличные значения $T_1 = 78$ К и $T_2 = 540$ К.

2. Диффузия и дрейф. Генерация и рекомбинация

2.1. В условиях термодинамического равновесия полная плотность тока ды-

рок $j_{\rm p}$ равна нулю, т.е $j_{\rm p} = j_{\rm p\, диф} + j_{\rm p\, дp} = q(\mu_{\rm p} E - D_{\rm p} \frac{dp}{dx}) = 0$.

Отсюда внутреннее поле $E_{\rm i} = \frac{D_{\rm p}}{\mu} \frac{dp}{dx} \frac{1}{p}$.

Продифференцировав p(x): $\frac{dp}{dx} = -\frac{p}{x_0}$,

получим $E_i = \frac{D_p}{\mu} \frac{1}{x_0} = 500 \frac{B}{cM}$ и $j_{p,\mu\nu\phi} = j_{p,\mu\rho} = 3,2 \cdot 10^{-14} \cdot N_A$.

2.2. Темп генерации с учетом $E_i = E_t$ задается формулой 18

$$G = \frac{pn - n_i^2}{\left(p + n + 2 \cdot n_i\right)\tau_0}.$$
(2.1)

По уровню легирования $N_{\rm D} = n_0 = 7 \cdot 10^{15} \, {\rm cm}^{-3}$ можно рассчитать равновесную концентрацию неосновных носителей заряда $p_0 = \frac{n_i^2}{N_p} = 2,1 \cdot 10^5 \text{ см}^{-3}$. Время

жизни τ_0 рассчитаем как:

$$\tau_0 = \frac{1}{N_t o_t v_t},\tag{2.2}$$

т.е. τ_0 равно $1 \cdot 10^{-7}$ с. Неравновесные концентрации носителей заряда равны $n = n_0 + \Delta n \approx n_0$ – основных и $p = p_0 + \Delta p \approx \Delta p$ – неосновных. В первом случае, когда $n, p \ll n_i$ формула (2.1) сводится к

$$G = \frac{-n_{\rm i}^2}{n_{\rm i} 2 \cdot \tau_0} = -\frac{n_{\rm i}}{2 \cdot \tau_0},$$

 $G = 7,25 \cdot 10^{16} \text{ см}^{-3} \cdot \text{c}^{-1}$, во втором случае $n \gg n_i$ и $p_0 \gg p$

$$G = \frac{n_0 \cdot \Delta p}{n_0 \tau_0} = \frac{p - p_0}{\tau_0} = -\frac{p_0}{\tau_0}$$

 $G = 2.6 \cdot 10^{11} \text{ cm}^{-3} \cdot \text{c}^{-1}$.

2.3. Время жизни τ_0 рассчитаем по формуле (2.2) как $\tau_0 = 1 \cdot 10^{-8}$ с, концентрации неравновесных носителей заряда равны $n = N_D = 10^{16}$ см⁻³ и $p = G \cdot \tau_0 = 10^{13}$ см⁻³.

2.4. Коэффициент рекомбинации *r* получим из соотношения
$$G = R = r \cdot n \cdot p$$
.
 $G = r(n + p) = r(n + \Delta n + p + \Delta p) = r \cdot \Delta n \cdot (n + p) = r \cdot \Delta n \cdot n$

$$G = r(n+p) = r(n_0 + \Delta n + p_0 + \Delta p) = r \cdot \Delta n \cdot (n_0 + p_0) = r \cdot \Delta n \cdot n_0.$$

Отсюда имеем для *r*: $r = \frac{G}{\Delta n} \cdot \frac{1}{n_0} = \frac{1}{\tau_0 n_0}$.

 $c = 1.10^{-8} \text{ см}^3 \text{c}^{-1}$, избыточная концентрация электронов $\Delta n = G \cdot \tau_0 = 5.10^{12} \text{ см}^{-3}$. 2.5. При наличии градиента концентраций плотность диффузионного тока

$$j_{\mu\mu\phi} = qD\frac{\Delta n}{\Delta x} = \frac{q\mu_{\rm n}}{\left(\frac{kT}{q}\right)} \cdot \frac{\Delta n}{\Delta x} = 825 \frac{\rm A}{\rm cm^2}.$$

2.6. В стационарном случае имеем: $G = \frac{\Delta p}{\tau_0}$ и $G = \gamma \cdot I$, поэтому

$$\Delta p = \gamma \cdot I \cdot \tau$$
, T.e. $\Delta p = 10^{16} \text{ cm}^{-3}$. $\frac{\Delta \sigma}{\sigma_0} = \frac{\Delta p(\mu_n + \mu_p)}{n_0 \mu_n} = 0.15$.

19

3. Барьеры Шоттки и *р-и* переходы. Диоды

3.1. Контактная разность потенциалов $\varphi_{\kappa} = \Phi_{Au} - \Phi_{Ge} = \Phi_{Au} - \chi + E_g/2$. Учитывая, что $N_D = \frac{1}{q\mu\rho} = 1, 6 \cdot 10^{15} \text{ см}^{-3}$ и $\varphi_0 = kT \ln\left(\frac{N_D}{n_i}\right) = 0,11 \text{ эB}$, имеем

 $\Phi_{\rm Ge} = 4,22 \ \Im B, \quad \varphi_{\rm K} = 0,48 \ \Im B.$

3.2. Ширина области обеднения И определяется

$$W = \sqrt{\frac{2\varepsilon_s \varepsilon_0 (\varphi_k - V_g)}{q \cdot N_d}}.$$
(3.1)

Высота барьера φ_{κ} , уровень легирования $N_{\rm D}$ и φ_0 рассчитываются, как и в задаче 3.1: $N_{\rm D} = 4,2\cdot 10^{16}$ см⁻³, $\varphi_0 = 0,38$ эВ, $\varphi_{\kappa} = 1,07$ эВ. Тогда W(V = +0,4) = 0,14 мкм, W(V = -0,2) = 0,14 мкм, W(V = 0) = 0,14 мкм.

3.3, 3.4. Зависимость электрического поля E и потенциала φ в барьере Шоттки от координаты x можно рассчитать как

$$E = \frac{d\varphi}{dx} = \frac{q \cdot N_d \cdot W}{\varepsilon_s \cdot \varepsilon_0} \left(1 - \frac{x}{W}\right);$$

$$\varphi = \varphi_{\max} \left(1 - \frac{x}{W}\right)^2.$$
 (3.2)

Ширина области обеднения W определяется, как и в задаче 3.2.

Ответ для задачи 3.3 при x = 0: $E_{\text{max}}(V_G = +0.3 \text{ B}) = 3.82 \cdot 10^4 \text{ B/cm}$, $E_{\text{max}}(V_G = 0 \text{ B}) = 4.95 \cdot 10^4 \text{ B/cm}$, $E_{\text{max}}(V_G = -110 \text{ B}) = 5.78 \cdot 10^5 \text{ B/cm}$.

Ответ для задачи 3.4 при W = 4,2 мкм: E(x = 1,2 мкм) = $1,9 \cdot 10^4$ B/см, $\varphi_{\text{max}} = \varphi_{\text{к}} + V_{\text{G}} = 5,65$ эВ, $\varphi(x) = 2,9$ В.

3.5. Вольт-амперная характеристика идеального диода описывается формулой:

$$j = j_{\rm s} \left(e^{\frac{qV_{\rm G}}{kT}} - 1 \right). \tag{3.3}$$

Величина тока насыщения *j*_s может быть рассчитана по диодной

$$j_{\rm s} = \frac{1}{4} q n_0 e^{-\frac{q \varphi_{\rm s}}{kT}} \sqrt{\frac{8kT}{m^* \pi}} \,.$$

или диффузионной теории

$$j_{\rm s} = q\mu_{\rm n} E_{\rm max} n_0 e^{\frac{q\varphi_{\rm k}}{kT}}$$

Из сравнения соотношения длины свободного пробега $l_{\rm np} = v_{\rm t} \cdot \tau = \frac{v_{\rm t} \mu_{\rm n} m^*}{q} = 0,033 \,{\rm MKM}$ и величины $\frac{2q\varphi_{\rm k} W}{kT} = 0,12 \,{\rm MKM}$, можно

сделать вывод, что справедлива диффузионная теория. Тогда имеем:

 $j_s = 1,8 \cdot 10^{-13} \text{ А/см}^2$ и *j* рассчитаем по формуле (3.3): $j = 4,3 \cdot 10^{-5} \text{ А/см}^2$ при $V = 0,5, j = 1,8 \cdot 10^{-13} \text{ А/см}^2$ при V = -5 B.

3.6. Высота потенциального барьера в *p-n* переходе равна $\varphi = \varphi_{\kappa} - V$. Контактную разность потенциалов (к.р.п.) φ_{κ} найдем как разность работ выхода:

$$\varphi_{\kappa} = \Phi_{p} - \Phi_{n} = \varphi_{p0} + \varphi_{n0} = kT \ln\left(\frac{N_{D}N_{A}}{n_{i}^{2}}\right) = 0,09 + 0,11 = 0,2$$
 3B.

Поэтому φ (V = +0,15) = 0,05 В, φ (V = -0,5) = 0,7 В. 3.7. Ширина области обеднения W_n в *n*-типе определяется как

$$W_{\rm n} = \sqrt{\frac{2\varepsilon_{\rm s}\varepsilon_0\left(\varphi_{\rm k} - V\right)}{qN_{\rm D}^2\left(\frac{1}{N_{\rm A}} + \frac{1}{N_{\rm D}}\right)}}.$$
(3.4)

Предварительно сосчитав $N_{\rm D} = 1,7 \cdot 10^{14} \text{ см}^{-3}$ и $N_{\rm A} = 3,3 \cdot 10^{15} \text{ см}^{-3}$, а также $\varphi_{\rm K} = 0,18$ эВ, получим $W_{\rm n} = 1,3$ мкм, $W_{\rm p} = 0,068$ мкм и

$$E_{\max} = \frac{qN_{\rm D}W_{\rm n}}{\mathcal{E}_{\rm s}\mathcal{E}_{\rm 0}} = \frac{qN_{\rm A}W_{\rm p}}{\mathcal{E}_{\rm s}\mathcal{E}_{\rm 0}} = 2,5 \cdot 10^3 \,\frac{\rm B}{\rm cm}$$

3.8. Аналогично предыдущей задаче имеем $W_p (V = -0,4 \text{ B}) = 0,42 \text{ мкм}$ и $W_p (V = +2 \text{ B}) = 0,97 \text{ мкм}$. Максимальное электрическое поле на границе $E_{\text{max}} (V = -0,4 \text{ B}) = 6,4 \cdot 10^3 \text{ B/cm}$ и $E_{\text{max}} (V = +2 \text{ B}) = 1,75 \cdot 10^4 \text{ B/cm}$, а при x = 0,2 мкм $E (V = -0,4 \text{ B}) = 3,4 \cdot 10^3 \text{ B/cm}$ и $E (V = +2 \text{ B}) = 1,4 \cdot 10^4 \text{ B/cm}$. 3.9. Т.к. концентрация примеси $N_D = 4,2 \cdot 10^{18} \text{ сm}^{-3}$ много больше

 $N_{\rm A} = 2,3 \cdot 10^{15}$ см⁻³, то $W_{\rm p} = 1$ мкм >> $W_{\rm n} = 0,00055$ мкм. Спад потенциала $\varphi(x)$ в *p*-область рассчитаем как

$$\varphi_{\rm p}(x) = \frac{qN_{\rm A}W_{\rm p}^2}{2\varepsilon_{\rm s}\varepsilon_0} \left(1 - \frac{x}{W_{\rm p}}\right)^2. \tag{3.5}$$

Результаты расчета по формуле (3.5) сведем в таблицу:

х, мкм	0	0,1	0,2	0,4	0,6	0,8	0,9
$\varphi(x), \mathbf{B}$	1,8	1,46	1,11	0,65	0,29	0,07	0,02

3.10. Вольт-амперная характеристика идеального диода описывается формулой 3.3, а ток насыщения *j*_s в случае *p-n* перехода, будет равен

$$j_s = \frac{q \cdot D_n \cdot n_{p0}}{L_n} - \frac{q \cdot D_p \cdot p_{n0}}{L_p}.$$
(3.6)

Коэффициент диффузии D найдем из соотношения Эйнштейна:

$$D = \mu \frac{kT}{q},\tag{3.7}$$

 $D_{\rm n} = 39 \text{ см}^2/\text{с}$ и $D_{\rm p} = 16 \text{ см}^2/\text{с}$, а диффузионную длину L по формуле $L = \sqrt{D \cdot \tau}$ (3.8)

 $L_{\rm n} = 0,31$ см и $L_{\rm p} = 0,063$ см.

Плотность тока насыщения $j_s = 5,3 \cdot 10^{-11} \text{ A} \cdot \text{см}^{-2}$. Ток через диод равен I(V = +0,5) = 0,13 мА и $I(V = -0,5) = 5,3 \cdot 10^{-13} \text{ A}$.

3.11. Вычислим работу выхода из Ge и GaAs $\Phi = \chi + \frac{E_g}{2} + \varphi_0$, учитывая, что $\varphi_{0 \text{ Ge}} = -0,16$ эВ и $\varphi_{0 \text{ GaAs}} = -0,53$ эВ. К.р.п. $\varphi_{\kappa} = 5,32 - 4,15 = 1,15$ эВ.

 $\psi_{0 \text{ Ge}} = -0,10$ эВ и $\psi_{0 \text{ GaAs}} = -0,55$ эВ. К.р.п. $\psi_{\kappa} = 5,52 = 4,15 = 1,15$ эВ Ширина области обеднения *W* в гетеропереходе равна

$$W = \sqrt{\frac{2\varphi_{\kappa}N_{b1}\varepsilon_{0}\varepsilon_{1}\varepsilon_{2}}{qN_{b2}\left(\varepsilon_{1}N_{b1} + \varepsilon_{2}N_{b2}\right)}},$$
(3.9)

где $N_{b\,1,2}$ и $\varepsilon_{1,2}$ – уровни легирования и диэлектрические проницаемости полупроводников. $W_{Ge} = W_{GaAs} = 0,28$ мкм. Разрыв зон можно рассчитать как

$$\Delta E_{\rm C} = \chi_{\rm GaAs} - \chi_{\rm Ge} = 0,0/9B,$$

$$\Delta E_{\rm V} = (\chi_{\rm GaAs} + E_{\rm g GaAs}) - (\chi_{\rm Ge} + E_{\rm g Ge}) = 0,849B.$$

nGe - pGaAs

Зонная диаграмма гетероперехода

3.12. Время нарастания обратного смещения *t* вычислим как отношение изменения заряда барьерной емкости ΔQ к протекающему току *I*: $t = \frac{\Delta Q}{I}$. Заряд *Q* выразим через ширину ОПЗ *W*: $Q = \frac{qN_{\rm D}SW}{2}$. Ширина областей обеднения

в *p*- и *n*-областях равны $W_p = W_n$ (т.к. равны концентрации $N_A = N_D$) и рассчитываются по формуле (3.4): $W(0) = 1,23 \cdot 10^{-4}$ см, $W(-10) = 5,29 \cdot 10^{-4}$ см. Заряды соответственно равны $Q(0) = 9,73 \cdot 10^{-11}$ Кл и $Q(-10) = 4,23 \cdot 10^{-10}$ Кл, а время нарастания $t = 3,26 \cdot 10^{-7}$ с.

3.13. Емкость диода при обратном смещении является барьерной емкостью

$$C = \frac{\varepsilon_0 \varepsilon_s}{W} = \sqrt{\frac{q \cdot \varepsilon_0 \varepsilon_s \cdot N_d \cdot N_a}{2(\varphi_k - V)(N_d + N_a)}},$$
(3.10)
ии – это диффузионная емкость $C = \frac{I\tau}{(TT)}.$

а в прямом смещении – это диффузионная емкость $C = \frac{Tr}{\left(\frac{kT}{q}\right)}$

Дифференциальное сопротивление вычислим через проводимость

$$g_{\rm d} = \frac{dI(V)}{dV}$$
, т.е. $r_{\rm d} \approx \frac{(kT/q)}{I(V)}$. Сопротивление базы – это просто последова-

тельно включенный резистор из кремния:

 $r_{\rm b} = \frac{\rho d_{\rm Si}}{\rm S} = \frac{d_{\rm Si}}{SqN_{\rm A}\mu} = 1$ кОм . Учитывая к.р.п. $\varphi_{\rm K} = 0,82$ В, проведем необхо-

димый расчет:

<i>V</i> , B	<i>r</i> _d , Ом	С, пФ
0,7	2,8	3580
0,5	6100	6,68
0,1	$3 \cdot 10^{10}$	3,36
0	$1,4.10^{12}$	3,15
-5	∞	1,18
-10	∞	0,63

Обратим внимание, что при прямом смещении V > 0,5 В: $r_{\rm d} < r_{\rm b}!$

4. Биполярные транзисторы

4.1. *a*) статический коэффициент передачи тока базы $\alpha_{\rm T} = \frac{I_{\rm pk}}{I_{\rm p3}} = 0,98$;

б) эффективность эмиттера $\gamma = \frac{I_{p_3}}{I_{p_3} + I_{n_3}}; \ в)$ коэффициент передачи тока в

схемах с ОБ и ОЭ: $\alpha = \alpha_{\rm T} \gamma = 0,97$ и $\beta = \frac{\alpha}{1-\alpha} = 33$; ток базы $I_6 = I_3 - I_{\rm K}$; $I_6 = (1+0,01) - (0,98 - 0,001) = 30$ мкА.

4.2. Пусть x = 0 – граница эмиттер–база $p(x) = p(0) \cdot \exp(-\alpha x)$, $p(0) = N_A$. В условиях термодинамического равновесия токи дрейфа и диффузии равны друг

другу:
$$q\mu pE_x = qD_p \frac{dp}{dx}$$
.

23

Учитывая соотношение Эйнштейна (3.7) выразим *E*_x:

$$E_{\kappa} = \frac{kT}{q} \cdot \frac{1}{p} \cdot \frac{dp}{dx} = \frac{kT}{q} \cdot \frac{\alpha \cdot p(0)e^{-\alpha x}}{p(0)e^{-\alpha x}} = \frac{kT}{q} \cdot \alpha,$$
$$\alpha = \frac{qE_{\kappa}}{kT} = 1,54 \cdot 10^{5} \text{ cm}^{-1}.$$

У коллектора при $x = x_6$, $p(x_6) = N_A \exp(-\alpha x) = 9,8 \cdot 10^{14} \text{ см}^{-3}$. 4.3. Пробой наступает при смыкании в базе областей обеднения со стороны коллектора $W_{\kappa\delta}$ и со стороны эмиттера $W_{3\delta}$. Сосчитаем барьеры на границах

коллектора $W_{\kappa\delta}$ и со стороны эмиттера $W_{3\delta}$. Сосчитаем барьеры на границах базы $\varphi_{03} = 0,902$ эВ и $\varphi_{0\kappa} = 0,706$ эВ. Величину $W_{3\delta}$ сосчитаем по формуле (3.4): $W_{3\delta} = 0,2$ мкм. Прокол базы наступит, когда $W_{\kappa\delta} = W_{\delta} - W_{3\delta} = 0,3$ мкм, это напряжение U_{np} получим из уравнения типа 3.4

$$W_{\kappa\delta} = \sqrt{\frac{2\varepsilon_{\rm s}\varepsilon_0 N_{\rm D}^{\kappa}(\varphi_{0\kappa} - U_{\rm np})}{qN_{\rm A}^{\delta}(N_{\rm D}^{\kappa} + N_{\rm A}^{\delta})}},\qquad(4.1)$$

 $U_{\rm np} = 13,2$ B.

Время пролета через базу $\tau = \frac{W^2}{2D_{n\delta}}$, где W- ширина базы без ОПЗ $W = W_6$ -

$$W_{\rm 96} - W_{\rm K6} = 0,23$$
 мкм, $\tau = 9,2$ пс. Граничная частота $f = \frac{1}{2\pi\tau} = 17,3$ ГГц

4.4.

а) Для данного транзистора барьеры на границах базы $\varphi_{03} = 0,856$ эВ и $\varphi_{0\kappa} = 0,635$ эВ, при данных $U_{3\kappa} = +0,5$ В и $U_{6\kappa} = -5$ В, соответствующие значения областей обеднения рассчитаем по формуле (4.1) и получим: $W_{36} = 0,215$ мкм и $W_{6\kappa} = 0,258$ мкм, толщина нейтральной области в базе: $W_6 = W - W_{36} - W_{6\kappa} = 0,527$ мкм.

 δ) концентрацию неосновных носителей около перехода эмиттер-база $p_n(0)$ рассчитаем по формуле:

$$p_{\rm n}(0) = \frac{n_{\rm i}^2}{N_{\rm D}} e^{\frac{qU_{36}}{kT}} = 5,18 \cdot 10^{12} \text{ cm}^{-3}$$

в) заряд неосновных носителей в области базы:

$$Q_{\rm f} = \frac{qSW_{\rm f}p_{\rm n}(0)}{2} = 6, 4 \cdot 10^{-13} \text{ Km}.$$

5. МДП-структуры

5.1. Дебаевская длина характеризует глубину проникновения электрического поля в полупроводник при малых возмущениях потенциала порядка *kT/q*:

$$L_{\rm D} = \sqrt{\frac{kT}{q} \cdot \frac{\varepsilon_{\rm s} \varepsilon_0}{q N_{\rm D}}} \tag{5.1}$$

Зная $N_{\rm D} = 2,8\cdot10^{14}$ см⁻³, $L_{\rm D} = 2,5\cdot10^{-5}$ см = 0,25 мкм. При больших величинах обедняющих напряжений глубина проникновения электрического поля W обычно много больше длины Дебая т.к. обычно

$$\Psi_{\rm s} \gg \frac{kT}{q} \, \operatorname{h} \frac{W}{L_{\rm D}} = \sqrt{\frac{2\Psi_{\rm s}}{\left(\frac{kT}{q}\right)}} \gg 1.$$

5.2. Для собственных полупроводников дебаевская длина экранирования L_D определяется ε_s и n_i , (см. формулу (5.1)):

Полупроводник	Si	Ge	GaAs	InSb
<i>L</i> _D , мкм	33	0,96	1200	0,035

т.е. дебаевская длина возрастает с ростом ширины запрещенной зоны.

5.3. Значения поверхностной концентрации $n_{\rm s}$ и $p_{\rm s}$ в классическом случае выражаются $n_{\rm s} = n_0 e^{\beta \psi_{\rm s}}$ и $p_{\rm s} = n_0 e^{-\beta (\psi_{\rm s} + 2 \varphi_0)}$. Рассчитаем необходимые параметры:

$$n_0 = \frac{1}{q\mu_n\rho_n}, \quad p_0 = \frac{n_i^2}{n_0}, \quad 2\varphi_0 = 2\frac{kT}{q}\ln\frac{n_0}{n_i}$$

 $n_0 = 4,2 \cdot 10^{15} \text{ cm}^{-3}, p_0 = 6,1 \cdot 10^4 \text{ cm}^{-3}, 2\varphi_0 = 0,65 \text{ 3B}.$

ψ _s , эΒ	0,3	-0,2	-0,5	-0,9
$n_{\rm s}, {\rm cm}^{-3}$	$4,5 \cdot 10^{20}$	$1,9.10^{12}$	$1,7.10^{7}$	3,4.10-3
$p_{\rm s}, {\rm cm}^{-3}$	$5,0.10^{-1}$	$1,2.10^{8}$	$1,3.10^{13}$	$6,5 \cdot 10^{19}$

Сравнивая значения *n*_s и *p*_s со значениями получаем, что состояние:

1 – обогащение, 2 – обеднение, 3 – слабая инверсия, 4 – сильная инверсия.

5.4. Заряд в ОПЗ $Q_{\rm sc}$ в общем случае записывается как

$$Q_{\rm sc} = \mathcal{E}_{\rm s} \mathcal{E}_{\rm 0} E_{\rm s} = \pm \frac{\sqrt{2\mathcal{E}_{\rm s} \mathcal{E}_{\rm 0} kT}}{qL_{\rm D}} \cdot F(\psi_{\rm s}, \varphi_{\rm 0}), \qquad (5.2)$$

здесь L_D – длина экранирования Дебая, функция $F(\psi_s, \phi_0)$ для невырожденного полупроводника *p*-типа:

$$F(\psi_{s},\varphi_{0}) = \sqrt{(e^{-\beta\psi_{s}} + \beta\psi_{s} - 1) + e^{-2\beta\varphi_{0}}(e^{\beta\psi_{s}} - \beta\psi_{s} - 1)}.$$
 (5.3)

Емкость ОПЗ C_{sc} также выражается через $F(\psi_s, \varphi_0)$:

$$C_{\rm sc} = \frac{\varepsilon_{\rm s}\varepsilon_{\rm 0}}{\sqrt{2}L_{\rm D}} \cdot \frac{\sqrt{(1 - e^{-\beta\psi_{\rm s}}) + e^{-2\beta\varphi_{\rm 0}}(e^{\beta\psi_{\rm s}} - 1)}}{F(\psi_{\rm s}, \varphi_{\rm 0})}.$$
 (5.4)

Для частных случаев: обогащения ($\psi_s < 0$), обеднения ($\varphi_0 > \psi_s > 0$), слабой ($2\varphi_0 > \psi_s > \varphi_0$) и сильной ($\psi_s > 2\varphi_0$) инверсии можно получить упрощенные выражения. Объемное положение уровня Ферми относительно середины запрещенной зоны вычислим по формулам (1.3–1.4), учитывая что $\varphi_0 = 0,29$ эВ, тогда имеем (см. таблицу ниже):

$\psi_{\rm s}$	$Q_{\rm sc}$, Кл/см ²	$C_{\rm sc}, \Phi/\rm{cm}^2$
0, плоские зоны	0	8,0·10 ⁻⁸
φ_0 , середина зоны	9,3·10 ⁻⁹	5,7.10-8
2 \varphi_0, пороговый потенциал	1,4.10-8	1.7.10 ⁻⁸

5.5. Т.к. $\varphi_0 < \psi_s < 2\varphi_0$, то реализуется условие слабой инверсии, что соответствует случаю треугольной потенциальной ямы, при этом:

$$\lambda_{\rm c} = \frac{\varepsilon_{\rm s}\varepsilon_0}{Q_{\rm p}} \cdot \frac{kT}{q} \,. \tag{5.5}$$

Вычислив $N_{\rm D} = 1 \cdot 10^{17}$ см⁻³ и $\varphi_0 = 0,41$ эВ, рассчитаем заряд в ОПЗ:

$$Q_{\rm B} = \sqrt{2q\varepsilon_{\rm s}\varepsilon_0 N_{\rm A}\psi_{\rm s}} , \qquad (5.6)$$

 $Q_{\rm B} = 1,4\cdot10^{-7}$ Кл см⁻² и среднее расстояние локализации $\lambda_{\rm c} = 1,9\cdot10$ -7 см при 300К и $\lambda_{\rm c} = 5\cdot10^{-8}$ см при 77 К.

5.6. Величина дебройлевской длины волны λ будет

$$\lambda = \frac{2\pi h}{(2m^* kT)^{\frac{1}{2}}}.$$
(5.7)

Будем для определенности рассчитывать ее для тяжелых электронов в Si, Ge, где m^* – анизотропная. Поскольку в соотношении присутствует постоянная Планка, все расчеты необходимо вести в системе единиц СИ. Величины дебройлевской длины волны l (в нм) приведены ниже:

	Si	Ge	GaAs	InSb
T = 300 K	7,7	6,0	29,0	67,0
T = 77 K	15,4	12,0	58,0	134,0

Следовательно, при T = 77 К дебройлевская длина волны возрастает в 2 раза. 5.7. Поскольку заряд в ОПЗ $Q_{sc} >> Q_B$ в основном обусловлен ионизованными донорами, то можно воспользоваться приближением треугольной потенциальной ямы. Для определенности будем считать E_i , N_i , l_c для тяжелых дырок. Рассчитаем необходимые параметры:

$$\varphi_0 = 0.45 \text{ } 3\text{B}, \ E_{\text{s}} = \frac{Q_{\text{B}}}{\varepsilon_{\text{s}}\varepsilon_0} = \sqrt{\frac{2qN_{\text{D}}2\varphi_0}{\varepsilon_{\text{s}}\varepsilon_0}} = 5.3 \cdot 10^6 \frac{\text{B}}{\text{cm}},$$
$$E_{\text{i}} = \left[\frac{qh\varepsilon_{\text{s}}}{(2m^*)^{\frac{1}{2}}}\right]^{\frac{2}{3}} \cdot \gamma_{\text{i}} = 0.044 \text{ } 3\text{B}.$$

Значение энергии дна подзон будет:

I = 0	$g_0 = 2,238$	$E_0 = 0,103 9B$
I = 1	$g_1 = 4,087$	$E_1 = 0,18 9B$
I = 2	$g_2 = 5,52$	$E_2 = 0,24$ $3B$

Значение уровня Ферми на поверхности $F_{\rm s}$, отсчитанное, как и $E_{\rm i}$, от дна валентной зоны будет $F_{\rm s} = \frac{E_{\rm g}}{2qg_0} = 0,13$ эВ. Отметим, что отсчет $F_{\rm s}$ и $E_{\rm i}$ прове-

ден в противоположные стороны; поэтому в функции заполнения уровней, куда входит расстояние между F_s и E_i , они должны суммироваться. Число электронов N_i :

$$N_{\rm i} = \frac{kT}{\pi h^2} m^* \cdot \ln \left[1 + \exp\left(-\frac{F_{\rm s} + E_{\rm i}}{kT}\right) \right] \approx \frac{kT}{\pi h^2} m^* \exp\left(-\frac{F_{\rm s} + E_{\rm i}}{kT}\right)$$
$$N_0 = 1, 1 \cdot 10^{-3} \, \text{cm}^{-2}, N_1 = 5, 6 \cdot 10^{-9} \, \text{cm}^{-2}, N_2 = 6, 3 \cdot 10^{-13} \, \text{cm}^{-2}.$$

Область локализации λ_с будет:

$$\lambda_{\rm ci} = \frac{2E_{\rm i}}{3q\varepsilon_{\rm s}}$$

$$\lambda_{c0} = 1,3 \cdot 10^{-8} \text{ M} = 130 \text{ Å}, \ \lambda_{c1} = 230 \text{ Å}, \ \lambda_{c2} = 310 \text{ Å}.$$

5.8. Величина заряда в ПС: $Q_{ss} = -qN_{ss}(\psi_s - \varphi_0)$, а заряд Q_{sc} в ОПЗ при условиях задачи обусловлен ионизованными акцепторами, т.е.

$$Q_{\rm sc} = \sqrt{2q\varepsilon_{\rm s}\varepsilon_{\rm 0}}N_{\rm A}\psi_{\rm s}$$

Рассчитаем необходимые параметры: $\varphi_0 = 0,46$ эВ и получим:

	Qss, Кл/см ²	Qsc, Кл/см ²
$\psi_{\rm s}=0$	$+1,5\cdot10^{-7}$	0
$\psi_{\rm s} = \varphi_0$	0	$-3,9.10^{-7}$
$\psi_{\rm s} = 2\varphi_0$	$-1,5\cdot10^{-7}$	$-5,5\cdot10^{-7}$

5.9. Постоянную времени моноэнергетических ПС τ , эквивалентную последовательную емкость C_s и сопротивление R_s рассчитывают по формулам:

$$\begin{split} C_{\rm s} &= \frac{q^2}{kT} \cdot N_{\rm s} \cdot f_0 \cdot (1 - f_0); \\ R_{\rm s} &= \frac{kT}{q^2} \cdot \frac{1}{N_{\rm s} \cdot (1 - f_0) \cdot \alpha \cdot n_{\rm s0}}; \\ \tau &= R_{\rm s} \cdot C_{\rm s}; \\ \alpha &= \sigma_{\rm t} \cdot v_{\rm t}; \\ f_0 &= \frac{1}{1 + e^{\frac{E_{\rm t} - F_{\rm s}}{kT}}}. \end{split}$$

Найдем вероятность заполнения уровня ловушек: уровень Ферми совпадает с ПС $E_t = F_s$, т.е. $f_0 = 0.5$. Найдем как и ранее: $\varphi_0 = 0.27$ эВ, вероятность захвата $\alpha = 1.10^{-9}$ см³·с⁻¹, тепловую скорость $v = 10^7$ см/с, изгиб зон на поверхности $\psi_{\rm s} = E_{\rm t} - \varphi_0 = 0,18$ эВ, концентрацию электронов на поверхности $n_{\rm s0} = 5,7 \cdot 10^{17} \, {\rm cm}^{-3}$.

Тогда $R_{\rm s} = 7,1 \cdot 10^{-4}$ Ом·см², $C_{\rm s} = 1,2 \cdot 10^{-6}$ Ф/см², $\tau = 8,8 \cdot 10^{-10}$ с.

5.10. Плотность поверхностных состояний в методе Термана рассчитывается

$$N_{ss} = \frac{C_{ox}}{q} \cdot \frac{\Delta V_G}{\Delta \psi_s} \,. \tag{5.8}$$

Где $\Delta V_{\rm G}$ – сдвиг экспериментальной ВФХ относительно теоретической ВФХ при двух значениях ψ_s , т.е. фактически $\Delta V_G = \Delta V_{G \text{ теор}} + \Delta V_{G \text{ эксп}}$. Значение напряжения на затворе идеальной МДП-структуры равно:

$$V_{\rm G reop} = \frac{Q_{\rm sc}(\Psi_{\rm s})}{C_{\rm ox}} + \Psi_{\rm s}.$$
 (5.9)

При этом заряд в ОПЗ $Q_{\rm sc}$ определим по (5.2), а емкость подзатворного диэлектрика найдем по формуле плоского конденсатора: $C_{\rm ox} = \frac{\varepsilon_{\rm n} \varepsilon_{\rm 0}}{d_{\rm n}} = 5 \cdot 10^{-8} \frac{\Phi}{{\rm cm}^2}$. Значения $\psi_{\rm s}$ выберем вблизи плоских зон 1-T

$$\psi_{\rm s} = \pm \frac{\kappa T}{q} = \pm 0,0259$$
 эВ. Тогда $\Delta V_{\rm G \, reop} = 0,070 - (-0,087) = 0,16$ В. Значение

 $\Delta V_{\text{G} \text{эксп}}$ найдем из наклона ВФХ $\Delta V_{\text{G} \text{эксп}} = \frac{\Delta C}{\delta}$. Удельную емкость

МДП-структуры рассчитаем как

$$C = \frac{C_{\text{ox}} \cdot C_{\text{sc}}(\boldsymbol{\psi}_{\text{s}})}{C_{\text{ox}} + C_{\text{sc}}(\boldsymbol{\psi}_{\text{s}})},$$
(5.10)

учитывая, что емкость ОПЗ $C_{\rm sc}$ можно определить по (5.4), то $\Delta C = 184 - 148 = 36$ пФ. $\Delta V_{\rm G\, эксп} = 0,86$ В. И окончательно $N_{\rm ss} = 4,2 \cdot 10^{12}$ см⁻² эВ⁻¹.

5.11. Для континуума поверхностных состояний в максимуме кривой норми-

рованной проводимости $\frac{G_p(\omega)}{\omega} = qN_{ss} \frac{\ln 3}{4} = 0,27 \cdot qN_{ss}$ и $\omega_m \tau = 1,98$. Отсюда $N_{\rm ss} = 4,6 \cdot 10^{10} \,\mathrm{cm}^{-2} \,\mathrm{sB}^{-1}$ и $\tau = 10^{-5} \,\mathrm{c}$. Зная постоянную времени $\tau = \frac{1}{\sigma_{,} v_{,} n_{\rm so}}$, можно определить сечение захвата ловушки $\sigma_t = 10^{-14}$ см², т.е. размер ловушки соответствует кулоновскому центру захвата 10Б × 10Б.

6. Полевые транзисторы

6.1. Как и ранее рассчитаем $\varphi_0 = 0,29$ эВ, высоту потенциального барьера $\varphi_{\rm k} = 4,05 + 0,56 + 0,29 - 4,1 = 0,8$ эВ, емкость подзатворного диэлектрика $C_{\rm ox} = 3,38 \cdot 10^{-8} \, \Phi/{\rm cm}^2$. Пороговое напряжение $V_{\rm T}$:

$$V_{\rm T} = \Delta \varphi_{\rm ms} + 2 \cdot \varphi_0 + \frac{\sqrt{2\varepsilon_{\rm s}\varepsilon_0 q N_{\rm D} \varphi_0}}{C_{\rm ox}} - \frac{Q_{\rm ox}}{C_{\rm ox}}, \qquad (6.1)$$
$$V_{\rm T} = 0.8 + 0.58 + 0.42 - 0.29 = 1.51 \, \rm B.$$

6.2. ВАХ МОП-транзистора в области плавного канала описывается формулой:

$$I_{\rm D} = \frac{W}{L} \cdot C_{\rm ox} \cdot \mu \cdot \left(V_{\rm G} - V_{\rm T}\right) \cdot V_{\rm D} \,. \tag{6.2}$$

Учитывая, что $R = \frac{V_{\rm D}}{I_{\rm D}}$, имеем:

$$(V_{\rm G} - V_{\rm T}) = \frac{L}{W} \cdot \frac{1}{R \cdot C_{\rm ox} \cdot \mu} = 3.1 \,\mathrm{B},$$

6.3. Напряженности полей в нижнем E1 и верхнем слое E2 связаны законом Гаусса: $\varepsilon_1 E_1 = \varepsilon_2 E_2 + \frac{Q}{\varepsilon_0}$, где Q – заряд, накопленный в плавающем затворе.

Кроме того,
$$V_{\rm G} = E_1 d_1 + E_2 d_2$$
. Следовательно, поле в нижнем слое:

$$E_1 = \frac{V_{\rm G}}{d_1 + d_2 \frac{\varepsilon_1}{\varepsilon_2}} + \frac{Q}{\varepsilon_0 (\varepsilon_1 + \varepsilon_2 \frac{d_1}{d_2})}.$$
(6.3)

Ток $J = \sigma E_1$ зависит от накопленного заряда Q как $J = 0, 2 - 2, 26 \cdot 10^5 \cdot |Q|$. Рассмотрим два случая:

а) Если внутреннее поле существенно меньше внешнего, т.е. в уравнении (6.3) первое слагаемое много больше второго, то $Q = \int Jdt \approx Jt$, т.е. имеем $Q = 5 \cdot 10^{-8}$ Кл и $\Delta V_{\rm T} = \frac{Q}{C_{\rm ox}} = 0,565$ В, где емкость окисла

$$C_{\text{ox}} = \frac{C_1 C_2}{C_1 + C_2} \approx C_2 = \frac{\varepsilon_2 \varepsilon_0}{d_2}$$
, т.к. емкость нижнего слоя много больше, чем

верхнего $C_1 >> C_2$.

б) Если *t* → ∞, то ток *J* падает (т.е. *J* → 0), и соответственно из выражения для тока $J = 0, 2 - 2, 26 \cdot 10^5 \cdot |Q| = 0$ можно получить встроенный заряд

 $Q = 0,2/2,26 \cdot 10^5 = 8,84 \cdot 10^{-7}$ Кл и $\Delta V_{\rm T} = 9,98$ В $\approx V_{\rm G}$.

6.4. Накопление заряда в инверсионном канале при термогенерации происходит по закону:

$$N_{\rm th} = N_{\rm s} (1 - e^{-\frac{t}{\tau_{per}}}),$$
 где $\tau_{\rm per} = \frac{N_{\rm D}}{n_{\rm i}}.$ (6.4)

Площадь элемента 2,5·10⁻⁷. Количество электронов в равновесии равно $N_{\rm s} = 1.10^{13} \cdot 2,5 \cdot 10^{-7} = 5 \cdot 10^6$ на элемент. За счет тепловой генерации имеем $N_{\rm th} = 0,05 \cdot 2,5 \cdot 10^3 = 125$ электронов на элемент. Из уравнения (6.4), учитывая $\tau_{\rm pen} >> t_{\rm H}$ ($t_{\rm H} = 10$ мс), $\tau_{\rm pen} = 200$ с. Сосчитав уровень легирования $N_{\rm D} = 1.10^{15}$ см⁻³, имеем $\tau_0 = 4$ мс.

6.5. Скорость поверхностной генерации *I*_s для полностью обедненной поверхности и скорость генерации *I*_F в приповерхностной обедненной области:

$$I_{\rm s} = \frac{q n_{\rm i} S N_{\rm ss} \upsilon_{\rm t} \sigma_{\rm t}}{2}; \quad I_{\rm F} = \frac{q n_{\rm i} S W}{2\tau}. \tag{6.5}$$

Отсюда плотность поверхностных состояний рассчитаем при условии

$$I_{\rm s} = 2 \cdot I_{\rm F}$$
, t.e. $N_{\rm ss} = \frac{2W}{\tau v_{\rm t} \sigma_{\rm t}} = 2 \cdot 10^{10} \,{\rm cm}^{-2}$.

7. Оптоэлектроника

7.1. Доля излучаемого света через лицевую поверхность светодиода *F* и коэффициент отражения *R* определяются:

$$F = \frac{1}{4} \cdot \left(\frac{n_1}{n_2}\right)^2 \cdot \left[1 - \left(\frac{n_2 - n_1}{n_2 + n_1}\right)^2\right]; \quad R = \left(\frac{n_2 - n_1}{n_2 + n_1}\right)^2.$$
(7.1)

 $P_0 = F \cdot P_i$ – внешняя мощность (P_i – внутренняя мощность);

$$P_{0} = \eta \cdot I \cdot V; \quad P_{i} = \frac{\eta \cdot I \cdot V}{F}; \quad \frac{1}{F} = \frac{4 \cdot (3,6)^{2}}{\left(1 - \left(\frac{2,4}{4,6}\right)^{2}\right)} = 71,23;$$

30

*P*_i = 0,015·0,05·2·71,23 = 0,106845 = 107 мВт.

7.2. Аналогично задаче 7.1 имеем $\eta = \frac{P_0}{I \cdot V}$, учитывая что

$$P_0 = F \cdot 3 \cdot I \cdot V = \frac{F \cdot I \cdot V}{I \cdot V} = 0, 3 \cdot F$$
 и F = 0,014; η = 0,0042;

7.3.
$$P_{\rm f} = \frac{P_{\rm dc}}{\sqrt{1 + \omega^2 \tau^2}}$$
. $P_{\rm f}(20) = 254,2$ MKBT; $P_{\rm f}(100) = 90,9$ MKBT;

7.4.
$$E_{\rm g} = 1,43 \cdot 0,92 = 1,315;$$
 $\Delta \lambda = \frac{1,24}{1,315} - \frac{1,24}{1,43} = 0,075$ мкм

7.5.

a) Режим фототока: ток через диод: $I = -(I_0 + I_p)$; фототок I_p равен $I_p = R \cdot P$, *R* – чувствительность [A/Bт]:

$$R = \frac{\eta \cdot q}{h \cdot \nu} = \frac{\eta \cdot q \cdot \lambda}{h \cdot c}, \quad \eta = \frac{r_e}{r_p} = \frac{r_e \cdot h \cdot \nu}{P}, \quad (7.2)$$

где $r_{\rm e}$ – число появившихся при облучении электронов, $r_{\rm p}$ – число фотонов с длиной волны λ . Имеем $I_{\rm p}$ = 6,4 мА.

б) Режим фото-э.д.с.: $I_{\rm BII} = 0$. Тогда $I_{\rm p} = I_0 (e^{\frac{qV}{kT}} - 1)$, учитывая $I_{\rm p} >> I_0$ $V = \frac{kT}{q} \cdot \ln(\frac{I_p}{I_0}),$ (7.3) V = 0,345 B.

7.6. Аналогично предыдущей задаче имеем: $R = 0.36 \text{ A/BT}, P = 2.78 \text{ мкBT}, r_b = 1.26 \cdot 10^{13} \text{ c}^{-1}.$

7.7. Входная оптическая мощность $P = \frac{r_{\rm p} \cdot hc}{\lambda} = 1,32 \cdot 10^{-9} \,\text{Bt}$, фототок $I_{\rm p} = R \cdot P = 7,95 \cdot 10^{-10} \,\text{A}$, выходной ток $I = M \cdot I_{\rm p} = 15,9 \,\text{нA}$, $r_{\rm e} = I_{\rm p}/q = 5 \cdot 10^9 \,\text{c}^{-1}$, отсюда квантовый выход $\eta = r_{\rm e}/r_{\rm p} = 0,5$.

сюда квантовый выход $\eta = r_e/r_p = 0.5$. 7.8. Ток на выходе $I = M \cdot I_p$, отсюда имеем $I_p = 5 \cdot 10^{-11}$ А и $r_p = I_p/(q\eta) = 6 \cdot 10^8 \text{ c}^{-1}$.

8. Интегральные микросхемы

- 8.1. Технологические операции создания транзистора типа *n-p-n*:
 - 1) Эпитаксиальное наращивание слоя *n*-типа ($\rho = 0,5$ Ом·см, d = 0,254 мм);
 - 2) Наращивание SiO₂ (d = 500 нм) на эпитаксиальный слой;
 - 3) Нанесение фоторезиста, маскирование и вытравливание окон в слое;

4) Легирование акцепторной примесью путем диффузии атомов бора;

5) Наращивание слоя SiO₂;

6) Повторение операции 3 для подготовки базовой области;

7) Диффузия бора в базовую область;

8-11) Аналогично повторение операций для подготовки областей эмиттера и коллектора;

12) Повторение операции 3 для создания окон под контактные площадки;

13) Металлизация всей поверхности вакуумным распылением алюминия;

14) Повторение операции 3 для создания межсоединений. Удаление излишков алюминия;

15) Контроль функционирования;

16) Помещение в корпус;

17) Выходной контроль.

8.2. Толщину подзатворного диэлектрика можем найти как $d_{ox} = \frac{U}{E} = \frac{10}{8} \cdot 10^6 = 1,25 \cdot 10^{-6} \text{ см}$, а емкость МОП-конденсатора найдем по формуле плоского конденсатора: $C_{ox} = 2,7 \cdot 10^{-7} \text{ Ф/см}^2$. Емкость *p-n* перехода C_j сосчитаем по (3.10): $W = 8,9 \cdot 10^{-5} \text{ см}$, $C_j = 1,16 \cdot 10^{-8} \text{ Ф/см}^2$, $\frac{C_{mos}}{C_j} = 23,4$.

8.3. Число квадратов в рисунке резистора равно $\frac{L}{W} = 4$. Поверхностное со-

противление рассчитаем как $R_{\rm s} = \frac{1000}{4} = 250 \frac{{\rm Om}}{{\rm { kBa}}{\rm { a}}}$, тогда усредненное

удельное сопротивление $\rho_{\rm cp} = \frac{x_{\rm j}}{q\mu_{\rm cp}N_{\rm as}} = R_{\rm s} \cdot x_{\rm j} = 250 \cdot 6 \cdot 10^{-4} = 0,5 \,\,{\rm Om} \cdot {\rm cm}$,

где $N_{\rm as}$ – поверхностная концентрация примеси.

8.4. Емкость $C = \frac{\varepsilon_{\text{ox}} \varepsilon_0 S}{d_{\text{ox}}} = 1,7 \cdot 10^{-11} \Phi$, сопротивление $R = \frac{\rho L}{Wd} = 2 \text{ кОм}$, RC = 34 нс.

8.5. Сопротивление такого резистора можно представить как параллельную цепочку двух резисторов R_1 и R_2 : $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$. Известно, что

$$\frac{1}{R} = q\mu N_{\rm D}' = q\mu N_{\rm D} x \,.$$

Тогда *R*₁ = 223 Ом, *R*₂ = 428 и *R* = 147 Ом.

8.6. Источник тока с токовым зеркалом Уилсона для операционного усилителя.

a) Запишем для трех узлов соотношения токов в соответствии с рисунком в виде системы уравнений:

$$\begin{split} I_1 &= I_{\kappa 1} + I_{62}, \\ I_2 &= I_3 - I_{62}, \\ I_3 &= I_{\kappa 3} + I_{61} + I_{63}. \end{split}$$

Учитывая, что $I_{\rm d} = \frac{I_{\kappa}}{\beta}$, получим:

$$I_{1} = I_{\kappa} \left(1 + \frac{1}{\beta_{2}} \right);$$

$$I_{2} = I_{\kappa} \left(1 - \frac{1}{\beta_{2}} + \frac{1}{\beta_{1}} + \frac{1}{\beta_{3}} \right).$$

Далее,

$$I_2 = I_{\kappa} \left(1 + \frac{1}{\beta_2} \right) + I_{\kappa} \left(\frac{1}{\beta_1} + \frac{1}{\beta_3} - \frac{2}{\beta_2} \right),$$

с учетом $I_1 \approx I_{\rm k}$ окончательно имеем искомое

$$I_2 = I_1 \left(1 + \frac{1}{\beta_1} + \frac{1}{\beta_3} - \frac{2}{\beta_2} \right).$$

б)

$$I_{1} = \frac{V_{\Pi}^{+} - V_{\Pi}^{-} - V_{532} - V_{533}}{R_{1}}; \quad V_{53} = 0,7 \text{ B};$$
$$R_{1} = \frac{V_{\Pi}^{+} - V_{\Pi}^{-} - V_{532} - V_{533}}{I_{1}} = \frac{20 - 1,4}{1 \text{ mA}} = 18,6 \text{ kOm}.$$

в) Диапазон линейного изменения напряжения обусловлен работой транзистора в активной области ВАХ и связан с напряжением питания $V_{\Pi} = \pm 10$ В, напряжением насыщения $V_{\text{нас}} = 0,2$ В и напряжением пробоя коллектор– эмиттер (50 В) транзисторов.

Минимальное напряжение:

$$V_{\text{мин}} = V_{\Pi} + V_{6^{3}2} + V_{\text{Hac}} = -10 + 0, 7 + 0, 2 = -9, 1 \text{ B}.$$

Максимальное напряжение:

$$V_{\rm make} = 50 - V_{\rm muh} = +41 \,\mathrm{B}$$
.

г) Выходное дифференциальное сопротивление

$$r_0 = \frac{1}{g_0}, \quad g_0 = \frac{dI_0}{dV_0} \approx \frac{I_{\kappa}}{\beta + 1} V_a,$$

где V_a – напряжение Эрли (обычно около 200 В), для $I_{\kappa} = 10^{-3}$ А и $\beta = 100$ имеем $r_0 = 20$ МОм;

 ∂) Процентное изменение I_2 при изменени
и $U_{\rm K2}$ на 1 В связано с выходным дифференциальным сопротивлением
 r_0 как

$$\frac{1}{I_0} \cdot \frac{dI_0}{dV_0} = \frac{1}{I_{\kappa}r_0} = 0,005 \,\frac{\%}{\mathrm{B}}.$$

8.7. Логические элементы

а						б	
1	1	0	1	1	0	0	0
а	b	С	d	а	b	С	d

8.8. Логическая схема и булевское выражение

8.9. D-триггер

Импульс	а	b	С	d	е
Состояние	установ.	сброс	ожидан.	установ.	сброс
Выход Q	1	0	0	1	0

8.10. ЈК-триггер

Импульс	а	b	С	d	е	f
Состоян.	сброс	триг.	триг.	устан.	триг.	ожид.
Выход Q	0	1	0	1	0	0

устан. – установка;

ожид. – ожидание (хранение);

триг. – триггер (счетный режим).

8.11. Мультиплексор

	а	b	С	d	е	f	g	h	i
Y	0	1	1	0	1	0	0	1	0

34

Да, можно, подключив на адресные входы 3-разрядный счетчик.

8.12. ОЗУ 16×4 бита

	а	b	С	d	е	f	g	h
Адрес	1111	1110	1101	0000	0000	1101	1110	1111
Данн. Q	1100	1000	1011	1111	неизв	1011	1000	1100
Состоян	зап	зап	Зап	ожид	чтен	чтен	чтен	чтен

Состояние	CS	WE	выходы Q
Запись	0	0	1
Чтение	0	1	инверсия данных
Ожидание	1	*	1

Литература

1. Гуртов В. А. Сборник задач по физике поверхности полупроводников/ Учебное пособие. – Петрозаводск. ПетрГУ, 1985. 92 с.

2. Росадо Л. Физическая электроника и микроэлектроника / М. Высшая школа, 1991. 352 с.

3. Маллер Р., Кейминс Т. Элементы интегральных схем / М. Мир 1989. 630 с.

4. Бонч–Бруевич В. Л., Звягин И. П., Карпенко И. В., Миронов А. Г. Сборник задач по физике полупроводников / М. Наука, 1987. 142 с.

5. Соклоф С. Аналоговые интегральные схемы / М., Мир, 1988. 583 с.

6. Dr. Geoff Childs (Oxford Brookes University), Optoelectonics, Mikkeli Polytechnic, 1996. (Курс лекций по оптоэлекторнике) Составители Валерий Алексеевич Гуртов Олег Николаевич Ивашенков

Сборник задач по микроэлектронике

Учебное пособие